• Title/Summary/Keyword: Turbulent Flows

Search Result 739, Processing Time 0.029 seconds

MEASUREMENT OF THE SINGLE AND TWO PHASE FLOW USING A NEWLY DEVELOPED AVERAGE BIDIRECTIONAL FLOW TUBE

  • Yun, Byong-Jo;Euh, Dong-Jin;Kang, Kyunc-Ho;Song, Chul-Hwa;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.595-604
    • /
    • 2005
  • A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the Pilot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal drift-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio & Malnes' momentum exchange model could predict the phasic mass flow rates within a $15\%$ error. A new momentum exchange model was also proposed from the present data and its implementation provides a $5\%$ improvement to the measured mass flow rate when compared to that with the Bosio & Malnes' model.

Effects of Corrugation Angle on Local Heat/Mass Transfer in Wavy Duct of Heat Exchanger (열교환기 내부 유로의 꺾임각 변화에 따른 국소 열/물질전달 특성 고찰)

  • Jang, In-Hyuk;Hwang, San-Dong;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.789-799
    • /
    • 2004
  • An experimental study is conducted to investigate the effects of duct corrugation angle on heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewalls are determined by using a naphthalene sublimation technique. The corrugation angles(${\alpha}$) of the wavy ducts are 145$^{\circ}$, 130$^{\circ}$, 115$^{\circ}$ and 100$^{\circ}$. And the Reynolds numbers based on the duct hydraulic diameter vary from 300 to 3,000. The results show that at the low Re(Re $\leq$1000), the secondary vortices called Taylor-Gortler vortices perpendicular to the main flow direction are generated due to effect of duct curvature. By these secondary vortices, high heat/mass transfer regions are formed on both pressure-side and suction-side walls. At the high Re(Re $\geq$ 1000), these secondary flows are vanished with helping flow transition to turbulent flow and the regions which show high heat/mass coefficients by flow reattachment are formed on suction side. As corrugation angle decreases, the local peak Sh induced by Taylor-Gortler vortices increase at Re $\leq$1000. At high Re(Re $\geq$ 1000), by the existence of different kind of secondary flows called Dean vortices, non-uniform Sh distribution appears along spanwise direction at the narrow corrugation angle (${\alpha}$=100$^{\circ}$). Average Sh also increase by the enhanced effect of secondary vortices and flow reattachment. More pumping power (pressure loss) is required with the smaller corrugation angle due to the enhancement of flow instability.

The Characteristics of Unconfined Hydrogen Diffusion Flames in Supersonic Air Flows (초음속 공기 유동장에서의 수소 확산 화염 특성에 대한 연구)

  • 김제흥;심재헌;김지호;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.78-86
    • /
    • 2000
  • The objective of this research is to understand the characteristics of a nonpremixed, turbulent, hydrogen jet flame which is stabilized in Mach 1.8 coflowing air flows. In order to investigate the flame structure, flame lengths and fuel trajectories were measured by using direct photography, acetone PLIF, Mie scattering techniques, and numerical simulation. Effect of increasing air velocity was investigated when fuel velocity is fixed. The subsonic flame length was decreased drastically, however the supersonic flame length was increased slowly Then the change of flame blow out characteristics was observed as varying fuel nozzle lip thickness. The flame stability can be increased when fuel nozzle lip thickness was increased, which indicates that the minimum fuel lip thickness ratio is required for the stable supersonic flames. Also, it is found that fuel jet is blocked by high pressure zone and low scattering zone is made. Then the fuel that was moving along the recirculation zone had longer residence time within the supersonic flames, which made partially premixed zone.

  • PDF

Will CFD ever Replace Wind Tunnels for Building Wind Simulations?

  • Phillips, Duncan A.;Soligo, Michael J.
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.107-116
    • /
    • 2019
  • The use of computational fluid dynamics (CFD) is becoming an increasingly popular means to model wind flows in and around buildings. The first published application of CFD to both indoor and outdoor building airflows was in the 1970's. Since then, CFD usage has expanded to include different aspects of building design. Wind tunnel testing (WTT) on buildings for wind loads goes back as far as 1908. Gustave Eiffel built a pair of wind tunnels in 1908 and 1912. Using these he published wind loads on an aircraft hangar in 1919 as cited in Hoerner (1965 - page 74). The second of these wind tunnels is still in use today for tests including building design ($Damljanovi{\acute{c}}$, 2012). The Empire State Building was tested in 1933 in smooth flow - see Baskaran (1993). The World Trade Center Twin Towers in New York City were wind tunnel tested in the mid-sixties for both wind loads, at Colorado State University (CSU) and the [US] National Physical Laboratory (NPL), as well as pedestrian level winds (PLW) at the University of Western Ontario (UWO) - Baskaran (1993). Since then, the understanding of the planetary boundary layer, recognition of the structures of turbulent wakes, instrumentation, methodologies and analysis have been continuously refined. There is a drive to replace WTT with computational methods, with the rationale that CFD is quicker, less expensive and gives more information and control to the architects. However, there is little information available to building owners and architects on the limitations of CFD for flows around buildings and communities. Hence building owners, developers, engineers and architects are not aware of the risks they incur by using CFD for different studies, traditionally conducted using wind tunnels. This paper will explain what needs to happen for CFD to replace wind tunnels. Ultimately, we anticipate the reader will come to the same conclusion that we have drawn: both WTT and CFD will continue to play important roles in building and infrastructure design. The most pressing challenge for the design and engineering community is to understand the strengths and limitations of each tool so that they can leverage and exploit the benefits that each offers while adhering to our moral and professional obligation to hold paramount the safety, health, and welfare of the public.

Thrust and torque prediction of multicopter propeller in hovering based on BET method (BET 기법을 이용한 멀티콥터 프로펠러의 정지비행시 추력 및 토크 계산)

  • Lee, Bumsik;Woo, Heeseung;Lee, Dogyeong;Chang, Kyoungsik;Lee, Dongjin;Kim, Minwoo
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.23-31
    • /
    • 2018
  • In the present work, the thrust and torque of multicopter propellers in hovering are predicted based on BET method. The geometry information of the propellers is obtained using a three dimensional scanner and the airfoil section is extracted using CATIA. EDISON CFD is adopted to calculate the drag and lift of airfoil at a given geometry and flow conditions and then thrust is calculated with respect to a given RPMs based on BET. Two simulations with laminar and turbulent flows are considered. The predicted value is compared with the performance data from the Product Company and results from JavaProp software, which is used in the design and prediction of propellers. In the case of a 9-inch propeller, the thrust from the product company is corresponding to the results between the laminar and turbulent flow conditions. In the 16-inch case, the predicted thrust at turbulent flow conditions conformed well with reference one. The predicted torque shows a big difference with the reference data.

A RANS modeling of backward-facing step turbulent flow in an open channel (개수로에서의 후향단차 난류 흐름 RANS 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • The backward-facing step (BFS) is a benchmark geometry for analyzing flow separation occurred at the edge and resulting development of shear layer and recirculation zone that are occupied by turbulent flow. It is important to accurately reproduce and analyze the mean flow and turbulence statistics of such flows to design physically stable and performance assurance structure. We carried out 3D RANS computations with widely used, two representative turbulence models, k-ω SST and RNG k-ε, to reproduce BFS flow at the Reynolds number of 23,000 and the Froude number of 0.22. The performance of RANS computations is evaluated by comparing numerical results with an experimental measurement. Both RANS computations with two turbulence models appear to reasonably well reproduce mean flow in the shear layer and recirculation zone, while RNG k-ε computation results in about 5% larger velocity between the outer edge of boundary layer and the free surface above the recirculation zone than k-ω SST computation and experiment. Both turbulence models underestimate the shear stress distribution experimentally observed just downstream of the sharp edge of BFS, while shear stresses computed in the boundary layer downstream of reattachment point are agree reasonably well with experimental measurement. RNG k-ε modeling reproduces better shear stress distribution along the bottom boundary layer, but overestimates shear shear stress in the approaching boundary layer and above the bottom boundary layer downstream of the BFS.

Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.435-447
    • /
    • 2011
  • A Computational Fluid Dynamics model is presented in this study for the simulation of the complex fluid flows with free surfaces inside the Tuned Liquid Column Dampers in horizontal motion. The characteristics of the fluid model of the TLCD in horizontal motion include the free surface of the multiphase flow and the horizontal moving frame. In this study, the time depend unsteady Standard ${\kappa}-{\varepsilon}$ turbulent model based on Navier-Stokes equations is chosen. The volume of fluid (VOF) method and sliding mesh technique are adopted to track the free surface of water inside the vertical columns of TLCD and treat the moving boundary of the walls of TLCD in horizontal motion. Several model solution parameters comprising different time steps, mesh sizes, convergence criteria and discretization schemes are examined to establish model parametric independency results. The simulation results are compared with the experimental data in the dimensionless amplitude of the water column in four different configured groups of TLCDs with four different orifice areas. The predicted natural frequencies and the head loss coefficient of TLCDs from CFD model are also compared with the experimental data. The predicted numerical results agree well with the available experimental data.

A Study on the Noise Reduction through the Control of Internal Flow for a Slim Type External ODD (슬림타입 외장형 ODD 내부의 유동 안정을 통한 소음저감에 관한 연구)

  • Lee, Woo-Jin;Seo, Jun-Ho;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.2
    • /
    • pp.72-77
    • /
    • 2012
  • The demand for the laptop computer has been increased day by day and most of users ask quiet computer and devices to work in comfortable environment. One of the devices which generate acoustic noise is an external ODD. Unlike the internal ODD, the external ODD is easy to emit noise because it runs outside of the computer and also it is packed with a thin plastic covers. As the disk rotates, vortex flow is generated inside of the cavity due to various and complicated mold parts of the cover. In addition, there is a gap between the disk tray and the upper/lower cases, through which the air flows as well as the noise leaks. In this study, we have proposed how to reduce the acoustic noise of an external ODD using numerical and experimental analysis. The pressure fluctuations and turbulent kinetic energy distributions are calculated for the developed model. The results show that the sound pressure level is reduced by 2.3dB through simple modifications of ribs of the top cover, which remove or suppress flow instabilities inside of the cavity.

Effects of Trim Conditions on Ship Resistance of KCS in Short Waves (단파장 영역에서 운항 자세가 KCS의 선체 저항에 미치는 영향)

  • Kim, Yeoun Joo;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.258-266
    • /
    • 2017
  • Numerical simulations of turbulent two phase flows around KCS have been performed to investigate effects of trim conditions on ship resistance of KCS in short waves by utilizing waves2foam. The wave lengths of LPP/2 and LPP/4 with 1m and 2m wave heights were imposed at inlet boundary. The resistance reduction at 2m trim by head and the increase of resistance at trims by stern were observed regardless of wave lengths and wave heights. The hull pressure on fore-and-aft rather than wave patterns around bulbous bows was mainly responsible for the total resistance coefficients of KCS in short waves. A phase diagram of contribution of hull pressure to the total resistance coefficients disclosed that the phase of representing the maximum resistance in time history played an important role in the effect of trim conditions on ship resistance of KCS in short waves.

A Study on Bubble Behavior Generated by an Air-driven Ejector for ABB (Air Bubble Barrier) (II): Comparison of Bubble Behavior with and without Ejector (공기구동 이젝터를 이용한 ABB (Air Bubble Barrier)의 기포거동 특성 연구 (II): 기포거동 특성의 비교 분석)

  • Seo, Hyunduk;Aliyu, Aliyu Musa;Kim, Hyogeum;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • To verify floatability of ABB (Air bubble barrier), we compared bubble swarm behavior with and without the air-driven ejector. Experiment was conducted using the fabricated air-driven ejector with 5 mm nozzle on the bottom of 1 m3 water tank. Reynolds number of air in the nozzle was ranged 1766-13248. We analyzed data with statistical method using image processing, particle mage velocimetry (PIV) and proper orthogonal decomposition (POD) analysis. As a result of POD analysis, there was no significant eigenmode in bubbly flow generated from the ejector. It means that more complex turbulent flows were formed by the ejector, thereby (1) making bubbles finer, (2) promoting three-dimensional energy transfer between bubble and water, and (3) making evenly distributed velocity profile of water. It is concluded that the air-driven ejector could enhance the performance of ABB.