• 제목/요약/키워드: Turbulent Flows

검색결과 740건 처리시간 0.023초

열선유속계에 의한 180.deg.곡관을 갖는 직사각 단면덕트에서의 난류유동 특성의 측정 (Measurement of turbulent flow characteristics of a rectangular duct with a 180.deg. bend by hot wire anemometer)

  • 박호영;유석재;최영돈
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.734-746
    • /
    • 1990
  • 본 연구에서는 문등이 제안한 방법에 의하여 직사각형 단면의 180˚곡관유동 에서 속도분포와 난류성분을 측정하여 단면의 종횡비 변화에 따른 유동특성과 난류특 성의 변화를 고찰하였다.

리블렛 표면을 이용한 난류 유동해석 및 마찰 저항감소 (Turbulent Flow Analysis and Drag Reduction by Riblet Surfaces)

  • 윤현식;구본국;전호환
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.59-67
    • /
    • 2004
  • Direct numerical simulations of turbulent flows over riblet-mounted surfaces are performed to educe the mechanism of drag reduction by riblets. Numerical simulations are performed for flow fields with R $e_$\tau$/=180. For riblet ridge angle $\alpha$=60$^{\circ}$, two different riblet spacings of $s^+/=20 and 40 are used in this study. The computed drag on the riblet surfaces is in good agreement with existing computational and experimental data. The mean velocity profiles show upward and downward shifts in the log-law for drag-decreasing and drag-increasing cases, respectively Turbulence statistics above the riblets are computed and compared with those above a flat plate. The purpose of this study is in two categories: first, to understand the drag reduction mechanism on riblet surface, second, to verify our own code by comparison of the present results with those from previous studies.udies.

2차원 혼합격자를 이용한 난류유동 계산 (Turbulent Flow Calculations Using an Unstructured Hybrid Meshes)

  • 김주성;오우섭;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.90-97
    • /
    • 1999
  • An implicit turbulent flow solver is developed for 2-D unstructured hybrid meshes. Spatial discretization is accomplished by a cell-centered finite volume formulation using an upwind flux differencing. Time is advanced by an implicit backward Euler time stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one equation model, which is coupled with wall function. The numerical method is applied for flows on a flat plate, the NACA 0012 airfoil, and the Douglas 3 element airfoil. The results are compared with experimental data.

  • PDF

냉장고의 냉동실내 냉기 덕트 내부의 유동해석 (Numerical Analysis of Fluid Flow in Freezer Duct of Refrigerator)

  • 엄윤섭;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.509-514
    • /
    • 2000
  • A numerical study has been performed to design duct parameters in the freezer of a domestic refrigerator. The visualization results of FDM analysis using the standard k-$\varepsilon$ model with inlet boundary conditions modelled in this paper show good agreements with the experimental ones in prediction overall flow characteristics. Dominant vortex flows are found in the left upper and right lower corners, while there exists large turbulent kinetic energy around the fan and right upper side of the fan. It, in turn, has effects on the performance and noise. It is recommended to locate the outlet far away from the fan in order to reduce the noise level.

  • PDF

선수부 자유 표면 부근의 와 유동과 난류 특성에 관한 수치적 연구 (Numerical Investigations on Vortical Flows and Turbulence beneath the Free Surface around Bow)

  • 정우철
    • 대한조선학회논문집
    • /
    • 제35권1호
    • /
    • pp.15-23
    • /
    • 1998
  • 뭉툭한 스트럿에 의하여 생성되는 자유 표면의 난류 현상에 대한 기본 특성을 수치해석적 방법으로 연구하였다. 지배 방정식으로는 3차원 Navier-Stokes 방정식과 연속 방정식을 사용하였으며, 이들 지배 방정식은 유한 차분법으로 이산화 하였다. 물체앞 자유 표면에서의 난류 유동을 모사하기 위하여 임의의 작은 외부 교란을 도입하여 Large Eddy Simulation을 수행하였다. 물체앞 자유 표면은 어떠한 속도 이상에서 격렬하게 진동하는데 그 기본 특성은 물체 주위의 난류 흐름과 유사함을 수치 계산으로 보였다.

  • PDF

INVESTIGATION OF DRAG REDUCTION MECHANISM BY MICROBUBBLE INJECTION WITHIN A CHANNEL BOUNDARY LAYER USING PARTICLE TRACKING VELOCIMETRY

  • Hassan Yassin A.;Gutierrez-Torres C.C.
    • Nuclear Engineering and Technology
    • /
    • 제38권8호
    • /
    • pp.763-778
    • /
    • 2006
  • Injection of microbubbles within the turbulent boundary layer has been investigated for several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not yet fully understood. Experiments in a channel flow for single phase (water) and two phase (water and microbubbles) flows with various void fraction values are studied for a Reynolds number of 5128 based on the half height of the channel and bulk velocity. The state-of-the art Particle Tracking Velocimetry (PTV) measurement technique is used to measure the instantaneous full-field velocity components. Comparisons between turbulent statistical quantities with various values of local void fraction are presented to elucidate the influence of the microbubbles presence within the boundary layer. A decrease in the Reynolds stress distribution and turbulence production is obtained with the increase of microbubble concentration. The results obtained indicate a decorrelation of the streamwise and normal fluctuating velocities when microbubbles are injected within the boundary layer.

An Experimental Studies on Heat Transfer and Friction Factor in a Square Channel with Varying Number of Ribbed Walls

  • Oh Se-Kyung;Kim Won-Cheol;Ahn Soo-Whan;Kang Ho-Keun;Kim Myoung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.281-289
    • /
    • 2005
  • An experimental study on the heat transfer and friction characteristics of a fully developed turbulent air flow in a square channel with $45^{\circ}$ inclined ribs on one, two, and four walls is reported. Tests were performed for Reynolds number ranging from 7,600 to 24,900. The pitch-to-rib height ratio, p/e, was kept at 8 and rib height-to-channel hydraulic diameter ratio, $e/D_h$, was kept at 0.0667. The heat transfer coefficient and friction factor values were enhanced with the increase in the number of ribbed walls. Results of this investigation could be used in various applications of internal channel turbulent flows involving different number of roughened walls.

미소기포 주입에 의한 마찰저항 감소에 대한 연구 (Experimental Study of Friction Drag Reduction in Turbulent Flow with Microbubble Injection)

  • 김덕수;김형태;김우전
    • 대한조선학회논문집
    • /
    • 제40권3호
    • /
    • pp.1-8
    • /
    • 2003
  • For the experiment of the friction drag reduction by microbubble injection, a drag reduction water tunnel was specifically designed and made. Experimental apparatus and procedures were devised and developed for measuring the change of wall friction drag with microbubble injection. For fully-developed channel flows. the change of friction drag with important parameters of microbubble injection is investigated and the experimental data and results obtained are presented. The amount of friction drag reduction up to 25% is observed in the present study.

주기적인 원주형 장애물이 있는 덕트유동 및 열전달의 비직교좌표변환에 의한 해석 (Numerical Analysis of Flow and Heat Transfer in Duct with Repeated Cylindrical Blockages by Non-orthogonal Coordinate Transformation)

  • 최영돈;이건휘
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.473-488
    • /
    • 1988
  • This paper is concerned with the prediction of two dimensional turbulent flows in the parallel plate with the repeated cylindrical blockages. The purpose of this paper is to find the effect of the eccentricity and the pitch of the repeated cylindrical blockages on the flow field, heat transfer coefficients and friction factors. A special technique is developed for the solution of the fully developed turbulent recirculating flow, in which the flow field varies periodically. A non-othogonal coordinate transformation is employed to solve the momentum and the energy equations. The results show that the pitch ratio or the eccentricity of the repeated blockages become smaller, or the Reynolds number of the flow larger, friction factors and heat transfer coefficients increase.

  • PDF

Reynolds stress correction by data assimilation methods with physical constraints

  • Thomas Philibert;Andrea Ferrero;Angelo Iollo;Francesco Larocca
    • Advances in aircraft and spacecraft science
    • /
    • 제10권6호
    • /
    • pp.521-543
    • /
    • 2023
  • Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. The imposition of realizability constraints is investigated through the introduction of penalization terms. The assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and produce physically realistic predictions.