• Title/Summary/Keyword: Turbulent Flow Fields

Search Result 264, Processing Time 0.023 seconds

Effect of the Advance Ratio on the Evolution of Propeller Wake (전진비가 추진기 후류에 미치는 영향)

  • Baek, Dong Geun;Yoon, Hyun Sik;Jung, Jae Hwan;Kim, Ki-Sup;Paik, Bu-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The present study numerically investigated the effect of the advance ratio on the wake characteristics of the marine propeller in the propeller open water test. Therefore, a wide range of the advance ratio(0.2${\kappa}-{\omega}$SST Model are considered. The three-dimensional vortical structures of tip vortices are visualized by the swirl strength, resulting in fast decay of the tip vortices with increasing the advance ratio. Furthermore, to better understanding of the wake evolution, the contraction ratio of the slip stream for different advance ratios is extracted from the velocity fields. Consequently, the slip stream contraction ratio decreases with increasing the advance ratio and successively the difference of the slip stream contraction ratio between J=0.2 and J=0.8 is about 0.1R.

Flow Visualization of Acoustic Streaming Induced by Ultrasonic Vibration Using Particle Imaging Velocimetry (PIV를 이용한 초음파 진동에 의해 유도된 음향유동의 가시화)

  • 노병국;권기정;이장연;이동렬
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.528-535
    • /
    • 2004
  • Ultrasonic Vibrator is designed to achieve the maximum vibration amplitude at 30 kHz by in-cluding a horn (diameter, 40 mm), mechanical vibration amplifier at the top of the ultrasonic vibrator in the system and making the complete system resonate. In addition, it is experimentally visualized by particle imaging velocimetry (PIV) that the acoustic streaming velocity in the gap is at maximum when the gap between the ultrasonic vibrator and stationary plate agrees with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave and the theoretical analysis of that is also accomplished and verified by experiment. It is observed that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary plate possibly changes due to the measurement of the average velocity fields of the acoustic streaming induced by the ultrasonic vibration at resonance and non-resonance. There exists extremely small average velocity at non-resonant gaps while the relatively large average velocity exists at resonant gaps compared with non-resonant gaps. It also reveals that there should be larger axial turbulent intensity at the hub region of the vibrator and at the edge of it in the resonant gap where the air streaming velocity is maximized and the flow phenomena is conspicuous than that at the other region. Because the variation of the acoustic streaming velocity at resonant gap is more distinctive than that at non-resonant gap, shear stress increases more in the resonant gap and is also maximized at the center region of the vibrator except the local position of center (r〓0). At the non-resonant gap there should be low values of vorticity distribution, but in contrast to the non-resonant gap, high and negative values of it exist at the center region of the vibrator with respect to the radial direction and in the vicinity of the middle region with respect to the axial direction. Acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover, the proposed method by acoustic streaming can be utilized to the nano and micro-electro mechanical systems as a driving mechanism in addition to the augmentation of the streaming velocity.

Circulation Dynamics of Keum River Estuary II. Fluid Dynamic Characteristics (錦江 河口의 海水循環力學 弟2報 流體力學的 諸特性)

  • Chung, Jong Yul;Bhang, In Kweon
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.141-152
    • /
    • 1984
  • In order to investigate the circulation dynamics of the Keum River estuary, 300velocity fields obtained at six sites over two tidal cycles by using instantaneous profiling technique were analyzed in detail. In this investigation, the variability of shear velocity, bottom shear stress, drag coefficient, and roughness length scale were confirmed. The measured values of the bottom boundary drag coefficient show wide range of variations, i.e., C$\_$100/=6.78${\times}$10$\^$-5/∼1.15${\times}$10$\^$-1/, and the mean of 300 measurements is 1.6${\times}$10$\^$-2/. The relationship between U* and C$\_$100/ also show the scatter in values. However, overall mean values over two tidal cycles at 6 stations show that if U* 1cm/s, C$\_$100/ is unpredictable, if U* 1cm/s, C$\_$100/ increase with U*. The values of Re$\_$100/ and C$\_$100/ have scatter. But the overall mean values over two tidal cycles show that if Re$\_$100/ 3.6${\times}$10$\^$5/, C$\_$100/ is unpredictable, if Re$\_$100/ 3.6${\times}$10$\^$5/, C$\_$100/=1.4${\times}$10$\^$-2/. Finally the flow regime of the Keum River estuary was classified as "subcritical fully turbulent" flow.

  • PDF

A Study on the natural Convection and Radiation in a Rectangular Enclosure with Ceiling Vent (천장개구부를 갖는 정사각형 밀폐공간내의 자연대류-복사 열전달에 관한 연구)

  • Park Chan-kuk;Chu Byeong-gil;Kim chol;Jung Jai-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 1998
  • This study investigated the natural convection and radiation in a rectangular enclosure with ceiling vent experimentally and numerically. A heat source is located on the center of the bottom surface. The analysis was peformed a pure convection and is combination of natural convection and radiation. The shape of the considered two dimensional model is a square whose center of ceiling($30\%$) is opened. The numerical simulations are carried out for the pure natural convection case and the combined heat transfer case by using the SIMPLE algorithm. For the turbulent flow, Reynolds stresses are closed by the standard $k-{\epsilon}$ model and the wall function is used to determine the wall boundary conditions. The experiment was performed on the same geometrical shape as the computations. The radiative heat transfer is analized by the S-N discrete ordinates method. The results of pure natural convection are compared with those of combined heat transfer by the velocity vectors, stream lines, isothermal lines. The results obtained are as follows 1. Comparing the results of pure convection with those of the combined convection-radiation through the shape of stream lines, isothermal lines are similar to each other. 2. The temperature fields obtained by numerical method are compared to those obtained by experimental one, and it is found that they are showed mean relative error $8.5\%$. 3. Visualization bt smoke is similar to computational results.

  • PDF