• Title/Summary/Keyword: Turbulence-induced Noise

Search Result 49, Processing Time 0.022 seconds

Turbulent-induced Noise of 2-dimensional Sonar Dome Shaped Structure (2차원 소나돔 형상 구조물의 난류유동소음 해석)

  • Choi, Yo-Seb;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Choi, Woen-Sug;Jung, Chul-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • The latest research has shown that the turbulence-induced noise is important in total characteristics of flow noise. Also, turbulence-induced noise have a significant influence for performance of sonar dome. In this paper, Flow analysis is performed on vicinity of the sonar dome model using Large Eddy Simulation method. Also, direct method that extracts perturbational sound pressure, FW-H method without turbulence-induced noise and permeable FW-H method that is able to calculate turbulence- induced noise were compared in order to show turbulence effect.

Turbulence-induced noise of a submerged cylinder using a permeable FW-H method

  • Choi, Woen-Sug;Choi, Yoseb;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Jung, Chul-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.235-242
    • /
    • 2016
  • Among underwater noise sources around submerged bodies, turbulence-induced noise has not been well investigated because of the difficulty of predicting it. In computational aeroacoustics, a number of studies has been conducted using the Ffowcs Williamse-Hawkings (FW-H) acoustic analogy without consideration of quadrupole source term due to the unacceptable calculation cost. In this paper, turbulence-induced noise is predicted, including that due to quadrupole sources, using a large eddy simulation (LES) turbulence model and a developed formulation of permeable FW-H method with an open source computational fluid dynamics (CFD) tool-kit. Noise around a circular cylinder is examined and the results of using the acoustic analogy method with and without quadrupole noise are compared, i.e. the FW-H method without quadrupole noise versus the permeable FW-H method that includes quadrupole sources. The usability of the permeable FW-H method for the prediction of turbulence-noise around submerged bodies is shown.

A study on the reduction of the flow-induced noise in turbo-charger diesel engines (터보 차져 디젤 엔진에서의 기류음 감소를 위한 연구)

  • Kang, Woong;Kim, Hyung-Jin;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2913-2917
    • /
    • 2007
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within the compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation was associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in turbocharger system. In this study, a sharp-edged reactive-type muffler was devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler were investigated which is related to the unsteadiness of turbulence and pressure in turbocharger system. A transfer matrix method was used to analyze the transmission loss of the muffler. Simple expansion muffler with extended tube of the reactive type is proposed for the reduction of high frequency component noise. Turbulence computation was carried out by a standard ${\kappa}-{\varepsilon}$ model. An optimal design condition of the muffler was obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise was achieved at the optimal design of the muffler as compared with the conventional turbocharger system.

  • PDF

Reduction of Flow-Induced Noise in an Expansion Muffler with Lids (삽입관이 있는 확장형 소음기에서의 기류음 감소)

  • Kang, Woong;Kim, Hyung-Jin;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.79-84
    • /
    • 2009
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within a compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation is associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in a turbocharger system. In this study, a expansion muffler with lids is devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler are investigated which are related to the unsteadiness of turbulence and pressure in the turbocharger system. A transfer matrix method is used to analyze the transmission loss of the muffler. A simple expansion muffler with lids is proposed for the reduction of high frequency component noise. Turbulence simulation is carried out by a standard k - ${\varepsilon}$ model. An optimal design condition of the muffler is obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise is achieved at the optimal design of the muffler as compared with the conventional muffler.

A Study of Flow Induced Noise for Multilayered Cylinder due to Turbulent Boundary Layer (난류경계층에 의한 다층재질 원통형 실린더의 유체소음 해석 연구)

  • 신구균;홍진숙;이헌곤
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.671-677
    • /
    • 1996
  • This paper presents the analytical method for predicting turbulence- induced noise in the multilayered cylinder composed of an outer hose, an inner fluid and an internal core. It is assumed that an infinite axisymmetric cylinder is located horizontally in water with free stream velocity and the turbulent boundary layer (TBL) surrounding the outer hose is fully developed and homogeneous. The transfer function at the core surface due to the propagation of the pressure fluctuation within the TBL is formulated using the linearized Navier-Stockes equation for solid and fluid. In the estimation of the energy spectrum of wall pressure fluctuation, the empirical formula proposed by Strawderman based on the Corcos model is used. A general algorithm for the calculation of the pressure level at the surface of a core, that is, turbulence- induced noise, is presented. Through the detailed numerical simulation, it is found that the major noise mechanism is the propagation of the bulge wave along hose.

  • PDF

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

Study on the Fluid-elastic Instability and Turbulence Excitation for the Steam Generator Tube (증기발생기 전열관의 유체탄성불안정성 및 난류가진 특성 연구)

  • 유기완;박치용;박수기;이종호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1400-1405
    • /
    • 2001
  • In this study, an analysis program to assess the susceptibility of steam generator tubes due to the flow-induced vibration was developed. Analysis of fluid-elastic instability and random turbulence excitation for the U-tube bundle in CE-type steam generator was accomplished. The effective mass distribution along the U-tube was obtained to calculate the natural frequency and dynamic mode shape. Finally, stability ratios and rms vibration amplitude for selected tubes are obtained.

  • PDF

Development of Hybrid Methods for the Prediction of Internal Flow-Induced Noise and Its Application to Throttle Valve Noise in an Automotive Engine (내부공력소음해석기법의 개발과 자동차용 엔진 흡기 시스템의 기류음 예측을 위한 적용)

  • 정철웅;김성태;김재헌;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.78-83
    • /
    • 2003
  • General algorithm is developed for the prediction of internal flow-induced noise. This algorithm is based on the integral formula derived by using the General Green Function, Lighthills acoustic analogy and Curls extension of Lighthills. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve are compared with actual measurements. This illustrative computation shows that the current method permits generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

  • PDF

Application of Subgrid Turbulence Model to the Finite Difference Lattice Boltzmann Method (차분 래티스볼츠만법에 Subgrid 난류모델의 적용)

  • Kang Ho-Keun;Ahn Soo-Whan;Kim Jeong-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.580-588
    • /
    • 2006
  • Two-dimensional turbulent flows past a square cylinder and cavity noise are simulated by the finite difference lattice Boltzmann method with subgrid turbulence model. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of FDLBM for handling arbitrary boundaries. The results are compared with those by the experiments carried out by Noda & Nakayama and Lyn et al. Numerical results agree with the experimental ones. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

A Prediction of Airflow-Induced Noise in DVD Drive using Acoustic Analogy (음향상사이론을 이용한 DVD Drive 내에서의 유동소음 예측)

  • Yoo, Seung-Won;Lee, Jong-Soo;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.502-507
    • /
    • 2000
  • This paper presents the numerical prediction of airflow-induced sound in DVD drives. Computational fluid dynamics (CFD) is first conducted to evaluate flow field characteristics due to the high-speed disk rotation, and to support the acoustic analysis. The acoustic analogy based on Ffowcs Williams-Hawkings (FW-H) equation is adopted to predict aeroacoustic noise patterns. The integral solution for quadrupole volume source is included to identify the turbulence noise generated inside the DVD tray. Near-field noise is strongly affected by the flow field characteristic, which is caused by the complex shape of the tray. For a mid-field, the quadrupole noise play as a counterpart of thickness noise or loading noise, resulting in a different pattern compared with those in the near field.

  • PDF