• 제목/요약/키워드: Turbulence models

검색결과 611건 처리시간 0.025초

The Comparison of Performance of Turbulence Model for a Transonic Axial Compressor Rotor (천음속 축류 압축기 동익의 유동장에 대한 난류 모델의 성능비교)

  • Han, Yong-Jin;Kim, Kwang-Yong;Ko, Sung-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.209-214
    • /
    • 2002
  • The present study is to compare the performance of turbulence models in the analysis of the complex flowfield of an axial flow compressor. Baldwin-Lomax turbulence model and k-$\omega$ turbulence model were selected for the comparison. The thin-layer Wavier-Stokes equation was calculated by explicit, finite-difference numerical scheme. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Experimental measurements for NASA rotor 37 were cited fer the comparison with numerical data. The compared two turbulence models gave similar performance over all except for total pressure.

  • PDF

REYNOLDS STRESS MODELING OF OPEN-CHANNEL FLOWS OVER BEDFORMS

  • Choi, Sung-Uk;Kang, Hyeong-sik
    • Water Engineering Research
    • /
    • 제3권4호
    • /
    • pp.247-258
    • /
    • 2002
  • This paper presents a non-isotropic turbulence modeling of flows over bedforms. The Reynolds stress model is used for the turbulence closure. In the model, Launder, Reece, and Rodi's model and Hanjalic and Launder's model are employed f3r the pressure strain correlation term and the diffusion term, respectively. The mean flow and turbulence structures are simulated and compared with profiles measured in the experiments. The numerical solutions from two-equation turbulence models are also provided for comparisons. The Reynolds stress model yields the separation length of eddy similar to the other numerical results. Using the developed model, the resistance coefficients are also estimated for the flows at different Froude numbers. Karim's (1999) relationship is used to determine the bedform geometry. It is found that the values of the form drag and the skin friction are very similar to those obtained by the other turbulence models. meaning higher values of the form drag and lower values of the skin friction compared with the empirical formulas.

  • PDF

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-flow Turbomachinery (축류형 유체 기계에서 팁 누설 유동 해석을 위한 난류 모델 성능 비교)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2162-2167
    • /
    • 2003
  • It is well-known that high anisotropic characteristic of turbulent flow field is dominant inside tip leakage vortex. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence model based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from steady-state Reynolds averaged Navier-Stokes simulations based on the RNG ${\kappa}-{\varepsilon}$ and the Reynolds stress model in two test cases, such as a linear compressor cascade and a forward-swept axial-flow fan, are compared with experimental data. Through the comparative study of turbulence models, it is clearly shown that the Reynolds stress model, which can express the production term and body-force term induced by system rotation without any modeling, should be used to predict the complex tip leakage flow, including the locus of tip leakage vortex center, quantitatively.

  • PDF

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-Flow Turbomachinery (축류형 유체기계에서 익단 누설 유동 해석을 위한 난류 모델 성능 평가)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제27권12호
    • /
    • pp.1655-1666
    • /
    • 2003
  • It is experimentally well-known that high anisotropies of the turbulent flow field are dominant inside the tip leakage vortex, which is attributable to a substantial proportion of the total loss and constitutes one of the dominant mechanisms of the noise generation. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence models based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from the steady-state Reynolds averaged Navier-Stokes simulations based on the RNG k-$\varepsilon$ model and the Reynolds stress model (RSM) are compared with experimental data for two test cases: a linear compressor cascade and a forward-swept axial-flow fan. Through this comparative study of turbulence models, it is clearly shown that the RSM, which can express the production term and body-force term induced by system rotation without introducing any modeling, should be used to predict quantitatively the complex tip leakage flow, especially in the rotating environment.

Probabilistic analysis of gust factors and turbulence intensities of measured tropical cyclones

  • Tianyou Tao;Zao Jin;Hao Wang
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.309-323
    • /
    • 2024
  • The gust factor and turbulence intensity are two crucial parameters that characterize the properties of turbulence. In tropical cyclones (TCs), these parameters exhibit significant variability, yet there is a lack of established formulas to account for their probabilistic characteristics with consideration of their inherent connection. On this condition, a probabilistic analysis of gust factors and turbulence intensities of TCs is conducted based on fourteen sets of wind data collected at the Sutong Cable-stayed Bridge site. Initially, the turbulence intensities and gust factors of recorded data are computed, followed by an analysis of their probability densities across different ranges categorized by mean wind speed. The Gaussian, lognormal, and generalized extreme value (GEV) distributions are employed to fit the measured probability densities, with subsequent evaluation of their effectiveness. The Gumbel distribution, which is a specific instance of the GEV distribution, has been identified as an optimal choice for probabilistic characterizations of turbulence intensity and gust factor in TCs. The corresponding empirical models are then established through curve fitting. By utilizing the Gumbel distribution as a template, the nexus between the probability density functions of turbulence intensity and gust factor is built, leading to the development of a generalized probabilistic model that statistically describe turbulence intensity and gust factor in TCs. Finally, these empirical models are validated using measured data and compared with suggestions recommended by specifications.

Performance Assessment of Turbulence Models for the Prediction of Moderator Thermal Flow Inside CANDU Calandria (칼란드리아 내부의 감속재 열유동 해석을 위한 난류모델 성능 평가)

  • Lee, Gong-Hee;Bang, Young-Seok;Woo, Sweng-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제36권3호
    • /
    • pp.363-369
    • /
    • 2012
  • The moderator thermal flow in the CANDU calandria is generally complex and highly turbulent because of the interaction of the buoyancy force with the inlet jet inertia. In this study, the prediction performance of turbulence models for the accurate analysis of the moderator thermal flow are assessed by comparing the results calculated with various types of turbulence models in the commercial flow solver FLUENT with experimental data for the test vessel at Sheridan Park Engineering Laboratory (SPEL).Through this comparative study of turbulence models, it is concluded that turbulence models that include the source term to consider the effects of buoyancy on the turbulent flow should be used for the reliable prediction of the moderator thermal flow inside the CANDU calandria.

Assessment of Turbulence Models with Compressibility Correction for Large Flow Separation in a Supersonic Convergent-Divergent Rectangular Nozzle (강한 박리 유동을 동반한 초음속 수축-확장 사각 노즐 유동에 적합한 난류 모델과 압축성 보정 모델의 평가)

  • Lee, Juyong;Shin, Junsu;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • 제12권5호
    • /
    • pp.40-47
    • /
    • 2018
  • The objective of this study is to investigate the turbulence models with compressibility correction for large separation-flow in a supersonic convergent-divergent rectangular nozzle. As turbulence models, Yang and Shih's Low-Re $k-{\varepsilon}$ model, Mener's $k-{\omega}$ SST model and Wilcox's $k-{\omega}$model were evaluated. In order to get a significant compressible effects, Sarkar and Wilcox compressibility correction models were applied to the turbulence models respectively. Also, the simulation results were compared with experimental data. The turbulence model with compressibility correction model improves both of shock position and pressure recovery, but deteriorates the length of Mach disk.

BASE DRAG PREDICTION OF A SUPERSONIC MISSILE USING CFD (CFD를 이용한 초음속 유도탄 기저항력 예측)

  • Lee Bok-Jik
    • Journal of computational fluids engineering
    • /
    • 제11권3호
    • /
    • pp.59-63
    • /
    • 2006
  • Accurate prediction of a supersonic missile base drag continues to defy even well-rounded CFD codes. In an effort to address the accuracy and predictability of the base drags, the influence of grid system and competitive turbulence models on the base drag is analyzed. Characteristics of some turbulence models is reviewed through incompressible turbulent flow over a flat plate, and performance for the base drag prediction of several turbulence models such as Baldwin-Loman(B-L), Spalart-Allmaras(S-A), k-$\varepsilon$, k-$\omega$ model is assessed. When compressibility correction is injected into the S-A model, prediction accuracy of the base drag is enhanced. The NSWC wind tunnel test data are utilized for comparison of CFD and semi-empirical codes on the accuracy of base drag predictability: they are about equal, but CFD tends to perform better. It is also found that, as angle of attack of a missile with control fins increases, even the best CFD analysis tool we have lacks the accuracy needed for the base drag prediction.

CFD Study Analysis on the Steam Ejector with Varying Turbulence models

  • Wibowo, Supriyanto;Utomo, Tony;Chung, Han-Sik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.572-577
    • /
    • 2008
  • CFD analysis has been carried out in this paper. The purpose is to reveal the understanding of flow phenomena inside the ejector on the performance of steam ejector using three well known turbulence models. In this study, the ejector design was modeled using finite area CFD techniques to resolve the flow dynamics in the ejectors. Furthermore, from this study it can be concluded that by employed vary of turbulence models there are different results in pressure distribution, in contour of Mach number and in Entrainment ratio inside the steam ejector.

  • PDF

A Numerical Study on the Off-Design Performance of Three-Dimensional Transonic Centrifugal Compressor Diffusers (3차원 천음속 원심압축기 디퓨저의 탈설계 성능에 관한 수치적 연구)

  • Kim, Sang Dug;Song, Dong Joo
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.134-140
    • /
    • 1999
  • A three-dimensional CSCM upwind flux difference splitting Navier-stokes code with two-equation turbulence models was developed to predict the transonic flows in centrifugal compressor diffuser. The k-$\epsilon$ model of Abe et al. performed well in predicting the pressure distribution in the shock wave/turbulent boundary-layer interaction. Three turbulence models predicted the similar distribution of static pressure through the diffuser and showed a good agreement with the experimental results. The secondary flows in the corner were predicted well by these turbulence models. The pressure increase before the throat of the diffuser vane is important for the overall pressure recovery. As the mass flow rate increased the blockage decreased at the throat. The pressure coefficient distribution through the diffuser depended on the throat blockage not on the rotational speed of the impeller.

  • PDF