• Title/Summary/Keyword: Turbulence flow

Search Result 2,252, Processing Time 0.027 seconds

Analysis of Pre and Post-Operative Speech In Combined Operation of Type I Thyroplasty and Arytenoid Adduction for Unilateral Vocal Cord Palsy (편측성대마비에 대한 제 1형 갑상성형술과 피열연골내전술의 동시수술시 술전 및 술후 음성언어분석비교)

  • 최홍식;정유삼;김성국;김영호;김광문
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.1
    • /
    • pp.66-70
    • /
    • 1998
  • Background and Objectives : The managements of unilateral vocal cord palsy include type Ⅰ thyroplasty and arytenoid adduction. One type operation has been shown no satisfactory effect. We evaluated preoperative and postoperative speech of unilateral vocal cord palsy patients who received combined operation of type Ⅰ thyroplasty and arytenoid adduction to help for the management plan of unilateral vocal cord palsy patients. Materials and Methods : We reviewed the postoperative results and complication of 17 surgically treated patients of unilateral vocal cord palsy at Severance hospital from Nov. 1996 to Dec. 1997 retrospectively. They were received combined operation of type Ⅰ thyroplasty and arytenoid adduction. Their pre and post-operative speech were analyzed with MDVP(Multi-Dimension-Voice analysis Program) of CSL(Computerized Speech Lab). Results : After the operation, MPT(Maximal Phonation Time) was increased and MFR(Mean Flow Rate) was decreased in all patients. NHR(Noise to Harmonic Ratio) and VTI(Voice Turbulence Index) were decreased : liner, RAP(Relative Average Perturbation Quotient), PPQ(Pitch Period Perturbation Quotient), sPPQ(smoothed Pitch Period Perturbation Quotient), vFo(fundamental frequency Variation) were decreased : Shimmer, APQ(Amplitude Perturbation Quotient), sAPQ(Smoothed Amplitude Perturbation Qoutient), vAm(Peak Amplitude Variation) were decreased in all the patients. Conclusions : In unilateral vocal cord pals), combined operation of type Ⅰ thyroplasty and arytenoid adduction could obtain satisfactory postoperative voice. MDVP has many parameters and good method for evaluation of voice surgery.

  • PDF

Numerical Analysis of NACA64-418 Airfoil with Blunt Trailing Edge

  • Yoo, Hong-Seok;Lee, Jang-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.493-499
    • /
    • 2015
  • The aerodynamic performance of blunt trailing edge airfoils was investigated. The flow fields around the modified NACA64-418, which consists of the tip blade of the wind turbine and Mexico model of IEA wind, were analyzed. To imitate the repaired airfoil, the original NACA64-418 airfoil, a cambered airfoil, is modified by the adding thickness method, which is accomplished by adding the thickness symmetrically to both sides of the camber line. The thickness ratio of the blunt trailing edge of the modified airfoil, $t_{TE}/t_{max}$, is newly defined to analyze the effects of the blunt trailing edge. The shape functions describing the upper and lower surfaces of the modified NACA64-418 with blunt trailing edge are obtained from the curve fitting of the least square method. To verify the accuracy of the present numerical analysis, the results are first compared with the experimental data of NACA64-418 with high Reynolds number, $Re=6{\times}10^6$, measured in the Langley low-turbulence pressure tunnel. Then, the aerodynamic performance of the modified NACA64-418 is analyzed. The numerical results show that the drag increases, but the lift increases insignificantly, as the trailing edge of the airfoil is thickened. Re-circulation bubbles also develop and increase gradually in size as the thickness ratio of the trailing edge is increased. These re-circulations result in an increase in the drag of the airfoil. The pressure distributions around the modified NACA64-418 are similar, regardless of the thickness ratio of the blunt trailing edge.

Real Time Monitoring and Simulation System (RTMASS) for Tak Flux Measurement Site, Thailand (태국 Tak 플럭스 관측소의 실시간 자료 감시 및 모사 시스템)

  • Wonsik Kim;Hyungjun Kim;Joon Kim;Yasushi Agata;Shin Miyazaki;Taikan Oki
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.116-127
    • /
    • 2003
  • The Tak flux measurement (TFM) site, one of the sites of Korean Flux Network (KoFlux) which is an infrastructure of AsiaFlux, is constructed at a northwest of Thailand. The eddy covariance technique is used for measuring energy, water and carbon dioxide ($CO_2$) fluxes, and a real time monitoring and simulation system (RTMASS) developed for data acquisition and processing. The RTMASS is the core structure of the KoFlux-data information system (KoFlux-DIS) and consisted of a remote and a local system. Data acquisition and transmission, and data storage, processing and publishing are functions of those systems, respectively. As primary results about the characteristics of mean flow and turbulence analysis, TFM is a proper site to measure and analyze the various fluxes and those budgets on tropical deciduous forest.

Development of a Numerical Method for the Evaluation of Ship Resistance and Self-Propulsion Performances (선박의 저항 및 자항성능 해석을 위한 수치기법 개발)

  • Kim, Jin;Park, Il-Ryong;Kim, Kwang-Soo;Van, Suak-Ho;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.147-157
    • /
    • 2011
  • A RANS(Reynolds averaged Navier-Stokes) based numerical method is developed for the evaluation of ship resistance and self-propulsion performances. In the usability aspect of CFD for the hull form design, the field grid around practical hull forms is generated by solving a grid Poisson equation based on the hull surface grid generated from station offsets and centerline profile. A body force technique is introduced to model the effects of the propeller in which the propeller loads are obtained from potential flow analysis using an unsteady lifting surface method. The free surface is captured by using a two-phase level-set method and the realizable $k-{\varepsilon}$ model is used for turbulence closure. The hull attitude in vertical plane, i.e., trim and sinkage, is calculated by using a quasi-steady method and then considered in the computation by translating and rotating the grid system according to the values. For the validation of the proposed method, the numerical results of resistance tests for KCS, KLNG, and KVLCC1 and of self-propulsion test for KCS are compared with experimental data.

Development of An Integrated Optimal Design Program for Design of A High-Efficiency Low-Noise Regenerative Fan (재생형 송풍기의 고효율 저소음 설계를 위한 통합형 최적설계 프로그램 개발)

  • Heo, Man-Woong;Kim, Jin-Hyuk;Seo, Tae-Wan;Koo, Gyoung-Wan;Lee, Chung-Suk;Kim, Kwang-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • A multi-objective optimization of a regenerative fan for enhancing the aerodynamic and aeroacoustic performance was carried out using an integrated fan design system, namely, Total FAN-Regen$^{(R)}$. The Total FAN-Regen$^{(R)}$ was developed for non-specialists to carry out a series of design process, viz., computational preliminary design, three-dimensional aerodynamic and aeroacoustic analyses, and design optimization, for a regenerative fan. An aerodynamic analysis of the regenerative fan was conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. And, an aeroacoustic analysis of the regenerative fan was implemented in a finite/infinite element method by solving the variational formulation of Lighthill's analogy based on the results of the unsteady flow analysis. An optimum shape obtained by Total FAN-Regen$^{(R)}$ shows the enhanced efficiency and decreased sound pressure level as much as 1.5 % and 20.0 dB, respectively, compared to those of the reference design. The performance test was carried out for an optimized regenerative fan to validate the performance of the numerically predicted optimal design.

Optimal Design and Combustion Analysis of Fuel-rich Gas Generator for Liquid Rocket Engine Based on RP-1 fuel (RP-1연료를 사용한 농후연소 가스발생기의 최적설계 및 연소해석)

  • 권순탁;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 101on1 in thrust with RP-1/LOx combination. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching in turbopump system. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. The configuration of the gas generator and the condition for performance which can maximize the objective function were determined and found to meet the design constraints. Also, the combustion analysis was conducted to evaluate the performance of designed chamber and injector of gas generator. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.

  • PDF

Numerical Simulation of Turbulent Heat Transfer in a Channel with One Wavy Wall (파형벽면이 있는 채널내의 난류열전달에 대한 수치해석)

  • Park Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.49-59
    • /
    • 2005
  • Turbulent heat transfer over a fully-developed wavy channel is investigated by a turbulence model. The nonlinear k- f - f$_{ model of Park et at.[1] is slightly modified and their explicit algebraic heat flux model is employed. The Reynolds number is fixed at Re$_{b}$=6760 and the wave configuration is varied in the range of 0 $\leq$ $\alpha$/$\lambda$$\leq$0.15 and 0.25 $\leq$A/H$\leq$4.0. In order to verify model performances, a large eddy simulation is performed for the selected cases. The model performance is shown to be generally satisfactory. By using k- $\varepsilon$ - f$_{ model, the enhancement of heat transfer and the characteristics of turbulent flow in wavy wall are investigated. Finally, the influence of wavy configuration on heat transfer is scrutinized.

Pulsatile Pressure Distribution on the Snubber of Reciprocating Compressor (왕복동식 압축기의 스너버내 맥동압 분포)

  • Lee, Gyeong-Hwan;Rahman, Mohammad-Shiddiqur;Chung, Han-Shik;Jung, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.606-611
    • /
    • 2007
  • Pulsation is an inherent phenomenon in reciprocating compressors. It interacts with piping to cause vibrations and performance problems. Indiscriminately connecting to a compressor can be dangerous and cost money in the form of broken equipment and piping, poor performance, inaccurate metering, unwanted vibration, and sometimes noise. Piping connected to a compressor can materially affect the performance and response. To minimize these detrimental effects, reciprocating compressor system should be equipped by pulsation suppression system. This study discusses pressure pulsation phenomena occurred in a reciprocating compressor system. An experiment applied air compressor unit, as pulsating pressure generator, has been done. The compressor was connected sequentially to a snubber model and pressure tank. Sensor probes were placed on the inlet and outlet pipes of snubber. Compressor was driven by a motor controlled by a frequency regulator. The experiment was conducted by adjusting the regulator at 40Hz. General information about an internal gas flow can be achieved by numerical analysis approach. Information of the velocity, pressure and turbulence kinetic energy distribution are presented in this paper. Based on this result, the design improvement might be done.

  • PDF

Effect of the Advance Ratio on the Evolution of Propeller Wake (전진비가 추진기 후류에 미치는 영향)

  • Baek, Dong Geun;Yoon, Hyun Sik;Jung, Jae Hwan;Kim, Ki-Sup;Paik, Bu-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The present study numerically investigated the effect of the advance ratio on the wake characteristics of the marine propeller in the propeller open water test. Therefore, a wide range of the advance ratio(0.2${\kappa}-{\omega}$SST Model are considered. The three-dimensional vortical structures of tip vortices are visualized by the swirl strength, resulting in fast decay of the tip vortices with increasing the advance ratio. Furthermore, to better understanding of the wake evolution, the contraction ratio of the slip stream for different advance ratios is extracted from the velocity fields. Consequently, the slip stream contraction ratio decreases with increasing the advance ratio and successively the difference of the slip stream contraction ratio between J=0.2 and J=0.8 is about 0.1R.

High Lift Device Design Optimization and Wind Tunnel Tests (고양력장치 설계 최적화 및 풍동시험)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Cho, Tae-Hwan
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.78-83
    • /
    • 2010
  • In the present paper, a flap was optimized to maximize the lift. A 2-element fowler flap system was utilized for optimization with an initial shape of general aviation airfoil and a flap shape designed by Wentz. Response surface method and Hicks-Henne shape function were implemented for optimization. 2-D Navier-Stokes method was used to solve flow field around aGA(W)-1 airfoil with a fowler flap. Commercial programs including Visual-Doc, Gambit/Tgridand Fluent were used. Upper surface shape and the flap gap were optimized and lift for landing condition was improved considerably. The original and optimized flaps were tested in the KARI's 1-m low speed wind tunnel to examine changes in aerodynamic characteristics. For optimized flap tests, the similar trend to prediction could be seen but stall angle of attack was lower than what was expected. Also, less gap than optimized design delayed stall and produced better lift characteristics. This is believed to be the effect of turbulence model.