• Title/Summary/Keyword: Turbofan engine

Search Result 80, Processing Time 0.019 seconds

Two Spool Mixed-Flow Turbofan Engine Performance Analysis Modeling (2 스풀 혼합흐름 배기방식 터보팬 엔진 성능해석 모델링)

  • Seungheon Lee;Hyoung Jin Lee;Sangjo Kim;Gyujin Na;Jung Hoe Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2023
  • In this study, performance analysis modeling of two spool mixed flow type turbofan engine according to steady-state and transient is performed. The target engine is selected as F100-PW-229 from Pratt & Whitney, and main engine components including fan, high pressure compressors, combustion, high pressure turbines, low pressure turbines, mixer, convergent-divergent nozzle are modeled. The cooling effect of turbine through secondary flow path are considered in engine simulation model. We develop in-house Matlab/Simulink-based engine performance analysis program capable of analyzing internal engine state and compare it with GASTURB which is generally used as a commercial engine analysis program.

Study on Fault Diagnostics Considering Sensor Noise and Bias of Mixed Flow Type 2-Spool Turbofan Engine using Non-Linear Gas Path Analysis Method and Genetic Algorithms (혼합배기가스형 2 스풀 터보팬 엔진의 가스경로 기법과 유전자 알고리즘 이용한 센서 노이즈 및 바이어스를 고려한 고장진단 연구)

  • Kong, Changduk;Kang, Myoungcheol;Park, Gwanglim
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.8-18
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

A Realization of Real Time Algorithm for Fault and Health Diagnosis of Turbofan Engine Components (터보팬엔진의 실시간 구성품 결함 및 건전성 진단 알고리즘 구현)

  • Han, Dong-Ju;Kim, Sang-Jo;Lee, Soo-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.717-727
    • /
    • 2022
  • An algorithm is realized for estimating the component fault and health diagnosis such as a deterioration. Based on the turbofan engine health diagnosis model, from the health parameters which are estimated by a real time tracking filter, the outliers are eliminated efficiently by an effective median filter to minimize an false alarm. The difference between the fault and deterioration trends is identified by the detection measure for abrupt change, thereby the clear diagnosis classifying the fault and the health condition is possible. The effectiveness of the algorithm for fault and health diagnosis is verified from the simulated results of engine component faults and deterioration.

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

Trend Monitoring of A Turbofan Engine for Long Endurance UAV Using Fuzzy Logic

  • Kong, Chang-Duk;Ki, Ja-Young;Oh, Seong-Hwan;Kim, Ji-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.64-70
    • /
    • 2008
  • The UAV propulsion system that will be operated for long time at more than 40,000ft altitude should have not only fuel flow minimization but also high reliability and durability. If this UAV propulsion system may have faults, it is not easy to recover the system from the abnormal, and hence an accurate diagnostic technology must be needed to keep the operational reliability. For this purpose, the development of the health monitoring system which can monitor remotely the engine condition should be required. In this study, a fuzzy trend monitoring method for detecting the engine faults including mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration and etc. Using engine condition database as an input to be generated by linear regression analysis of real engine instrument data, an application of the fuzzy logic in diagnostics estimated the cause of fault in each component. According to study results. it was confirmed that the proposed trend monitoring method can improve reliability and durability of the propulsion system for a long endurance UAV to be operated at medium altitude.

Study on Component Map Generation and Performance Simulation of 2-spool Separate Flow Type Turbofan Engine Using SIMULINK (SIMULINK를 이용한 2-스풀 분리형 배기방식 터보팬 엔진의 구성품 성능맵 생성 및 성능모사에 관한 연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate-flow turbofan engine named (BR715-56) which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

Technical Trends for Small Aircraft Propulsion (소형항공기 추진기관 기술동향)

  • Kim, Keun-Bae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • Technical trends of propulsion system for small aircraft are investigated. Currently, most small aircraft are equipped with piston engine, turboprop and turbofan engines, and the technology development is going continuously. For piston engines, new diesel engines are arising besides gasoline engine. The diesel engines use relatively low-cost and easy to get fuel(Jet A), so the demand for small aircraft is getting increased, and new engines with high reliability and efficiency are being developed. For gas turbine engines, application of small turbofan is getting increased for newly arising VLJ market and the engine demand will be rapidly increased in the future. On the other hand, some electric propulsions without fossil fuels are being developed without high cost of fuel and environmental effects. In the future, propulsion system for small aircraft will be developed having enhancement of performance and efficiency with higher reliability and safety.

  • PDF

Performance Modeling and Off-design Performance Analysis of A Separative Jet Turbofan Engine Using SIMULINK (SIMULINK를 이용한 분리형 노즐을 갖는 터보팬엔진 성능모델 구성 및 탈설계점 성능 해석)

  • Kong, Chang-Duk;Park, Gil-Su;Lee, Kyung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.219-224
    • /
    • 2012
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate jet turbofan engine named BR715-56 which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

  • PDF

Effects of Axial Flow Compressor Surge on the Performance of Turbofan Engine (터보팬 엔진의 축류압축기 서지가 엔진성능에 미치는 영향)

  • Oh, Chang-Yong;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • This thesis has analyzed the effect of the surge happening in flight on the engine performance, especially on the PW4000 turbofan engine. It is to be judged that the flight surge can occur more often at the time of takeoff than it does en route due to the fact that the engine parameters are prone to fluctuate. EPR is judged to be the most highly sensitive parameter responding when surge occurs. Both Engine rpm and Wf decrease almost simultaneously just like an EPR. During the take-off rolling, N1 vibration is more sensitive than the N2 vibration. Consequently, the surge can be detected by EGT increase, while the other parameters (EPR, rpm, Wf, etc) decrease.

Surge Control of Turbofan Engine Compressor with the Variable Inlet Guide Vane (가변 안내익을 이용한 터보팬 엔진 압축기의 서지 제어)

  • Bae, Kyoungwook;Kim, Sangjo;Han, Dongin;Min, Chanoh;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.539-546
    • /
    • 2013
  • Surge phenomenon can be occurred in a compressor when compressor performance of turbofan engine for an aircraft is changed considerably in a short time on the cases like take-off phase and changing of RPM from idle to maximum, because performance of aircraft engine is changed suddenly. This study is aimed to avoid surge in a compressor. Dynamic simulation in a compressor is modeled by simulink in specific condition. Fuel flow is control input, rpm and air mass flow are expressed in terms of transfer function. Surge margin is obtained by using compressor performance map from NPSS. VIGV(Variable Inlet Guide Vane) is controlled by PD controller with difference between surge margin and reference. Finally this paper verifies IGV can prevent surge phenomenon in a compressor.