• Title/Summary/Keyword: Turbo equalizer

Search Result 44, Processing Time 0.026 seconds

Performance Analysis of Underwater Acoustic Communication Systems with Turbo Equalization in Korean Littoral Sea (한국 연근해 환경에서 터보 등화기를 이용한 수중음향통신 시스템 성능 분석)

  • Park, Tae-Doo;Han, Jeong-Woo;Jung, Ji-Won;Kim, Ki-Man;Lee, Sang-Kook;Chun, Seung-Yong;Son, Kweon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.124-130
    • /
    • 2013
  • The performance of underwater acoustic communication system is sensitive to the ISI(Inter-Symbol Interference) due to delay spread develop of multipath signal propagation. The equalizer is used to combat the ISI. In this paper, the performances of underwater acoustic communication with turbo equalizer were evaluated by real data collected in Korean littoral sea. As a result, when one iterative decoding using turbo equalizer is applied, the performance was improved 1.5 dB than the case of the non-iterative equalizer at BER $10^{-4}$. In the case of two or three iterations the performance was enhanced about 3.5 dB, but the performance wasn't improved any more in the case of more than three times.

Performance Analysis of DVB-T2 Turbo Equalization with LDPC and MAP Detector (LDPC 복호와 MAP 등화기를 결합한 DVB-T2 터보 등화기법의 성능분석)

  • Tai, Qing Song;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.15 no.5
    • /
    • pp.665-671
    • /
    • 2010
  • In this paper, a turbo equalizer is proposed for the digital video broadcasting for terrestrial - 2nd generation (DVB-T2) system. The proposed turbo equalizer is consisted with the maximum a posteriori (MAP) and low density parity check (LDPC) decoder. The channel information for the soft-input-soft-output (SISO) MAP equalizer is based on the least square (LS) channel estimator. The performance is analyzed through computer simulations in terms of the iteration number.

Effective Self-Interference Cancellation for SSD(Simultaneous Single Band Duplex) System (SSD(Simultaneous Single Band Duplex) 시스템을 위한 효과적인 자기 간섭 제거 방법)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.189-198
    • /
    • 2014
  • In this paper, we propose a SSD(Simultaneous Single band Duplex) system using turbo equalizer with frame structure for simultaneous full-duplex communication in single band. the proposed system uses frame structure for self-interference cancellation effectively. In this paper, performance of the proposed system with frame structure compares to performance of SSD system without frame structure to analysis performance of the proposed system with frame structure. Simulation results show that the performance of proposed system with frame structure is batter than performance of SSD system without frame structure when the number of global iterations of both system is same. Using proposed system with frame structure, we can verify that the performance like SSD system without frame structure by few global iteration of turbo equalizer.

Bit-to-Symbol Mapping Strategy for LDPC-Coded Turbo Equalizers Over High Order Modulations (LDPC 부호 기반의 터보 등화기에 적합한 고차 변조 심볼사상)

  • Lee, Myung-Kyu;Yang, Kyeong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.432-438
    • /
    • 2010
  • In this paper we study the effect of bit-to-symbol mappings on the convergence behavior of turbo equalizers employing low-density parity-check (LDPC) codes over high order modulations. We analyze the effective SNR of the outputs from linear minimum mean-squared error (MMSE) equalizers and the convergence property of LDPC decoding for different symbol mappings. Numerical results show that the bit-reliability (BR) mapping provides better performance than random mapping in LDPC-coded turbo equalizers over high order modulations. We also verify the effect of symbol mappings through the noise threshold and error performance.

An Efficient FTN Decoding Method using Separation of LDPC Decoding Symbol in Next Generation Satellite Broadcasting System (차세대 위성 방송 시스템에서 LDPC 복호 신호 분리를 통한 효율적인 FTN 복호 방법)

  • Sung, Hahyun;Jung, Jiwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.63-70
    • /
    • 2016
  • To increase throughput efficiency and improve performance, FTN(Faster Than Nyquist) method and LDPC(Low Density Parity Code) codes are employed in DVB-S3 system. In this paper, we proposed efficient turbo equalization model to minimize inter symbol interference induced by FTN transmission. This paper introduces two conventional scheme employing SIC(Successive Interference Cancellation) and BCJR equalizer. Then, we proposed new scheme to resolve problems in this two conventional scheme. To make performance improved in turbo equalization model, the outputs of LDPC and BCJR equalizer are iteratively exchange probabilistic information. In fed LDPC outputs as extrinsic informa tion of BCJR equalizer. we split LDPC output to separate bit probabilities. We compare performance of proposed scheme to that of conventional methods through using simulation in AWGN(Additive White Gaussian Noise) channel. We confirmed that performance was improved compared to conventional methods as increasing throughput parameters of FTN.

Decision Feedback Equalizer for DS-UWB Systems

  • Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.500-508
    • /
    • 2008
  • Direct-sequence ultra-wideband(DS-UWB) system is being considered as one of promising transmission technologies for wireless personal area networks(WPANs). Due to relatively low spreading factors and huge bandwidth of transmit signal, a DS-UWB receiver needs to be equipped not only with a rake receiver but also with an equalizer, of which the equalizer is not required for traditional direct-sequence code division multiple access(DS-CDMA) systems. The number of rake fingers is limited in practice, influencing the performance of the subsequent equalizer. In this paper, we derive a decision feedback equalizer(DFE) for DS-UWB systems based on the minimum mean square error(MMSE) criterion, and investigate the impact of various parameters on the DFE performance in realistic scenarios. In particular, we propose an approach to improving the performance of the DFE using additional channel estimates for multipaths not combined in the rake receiver, and discuss how the accuracy of channel estimation affects desirable DFE configuration. Moreover, we present simulation results that show the impact of turbo equalization on the DFE performance.

Performance Evaluation of MIMO system by phase difference in underwater channel (수중통신환경에서 위상 차이에 따른 MIMO 시스템 성능 평가)

  • Park, Gun-yeol;Park, Tae-doo;Jung, Ji-won;Park, Sun;Choi, Myung Su;Lee, Sung Ro
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.402-404
    • /
    • 2013
  • The wireless communication channel different speed by depth of water or salt and it is influenced by multi-path according underwater. In the paper, MIMO(Multi-input-Multi-Output) system used turbo Equalizer combining Equalizer with Turbo codes for data rates by multi-path channel. we proposed and simulated that the Decision-Directed method used for phase offset. The simulation of proposed method show that the bit-error rate performance can be severely affected by phase errors.

  • PDF

Performance Analysis of the Pre-Equalizer System for the OFDM System (OFDM system을 위한 Pre-Equalizer 시스템의 성능 분석)

  • Cho, Kyung-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.12
    • /
    • pp.864-869
    • /
    • 2014
  • In this paper, we propose an OFDM system with a pre-equalizer which pre-distorting a transmission signal to compensate for the degradation of the system by the intersymbol interference and multi-path fading at the high-speed multimedia communications. We model an OFDM system by using C language, a simulation was performed. As a result, there was a performance of BER is about 7dB at $10^{-3}$, improved to $10^{-4}$ on the MMSE property also $10^{-3}$.

A Study of Efficient Viterbi Equalizer in FTN Channel (FTN 채널에서의 효율적인 비터비 등화기 연구)

  • Kim, Tae-Hun;Lee, In-Ki;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1323-1329
    • /
    • 2014
  • In this paper, we analyzed efficient decoding scheme with FTN (Faster than Nyquist) method that is transmission method faster than Nyquist theory and increase the throughput. we proposed viterbi equalizer model to minimize ISI (Inter-Symbol Interference) when FTN signal is transmitted. the proposed model utilized interference as branch information. In this paper, to decode FTN singal, we used turbo equalization algorithms that iteratively exchange probabilistic information between soft Viterbi equalizer (BCJR method) and LDPC decoder. By changing the trellis diagram in order to maximize Euclidean distance, we confirmed that performance was improved compared to conventional methods as increasing throughput of FTN signal.

Optimum Turbo Equalization Method based on Layered Space Time Codes in Underwater Communications (MIMO 수중통신에서 최적의 터보 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1042-1050
    • /
    • 2014
  • The performance of underwater acoustic(UWA) communication system is sensitive to the Inter-Symbol Interference(ISI) due to delay spread develop of multipath signal propagation. And due to limited frequency using acoustic wave, UWA is a low transmission rate. Thus, it is necessary technique of Space-time code, equalizer and channel code to improve transmission speed and eliminate ISI. In this paper, UWA communication system were analyzed by simulation using these techniques. In the result of simulation, the proposed Turbo Equalization method based on layered Space Time Codes has improved performance compared to conventional UWA communication.