• Title/Summary/Keyword: Turbo decoding

Search Result 217, Processing Time 0.035 seconds

Performance Analysis of Error Correction Codes for 3GPP Standard (3GPP 규격 오류 정정 부호 기법의 성능 평가)

  • 신나나;이창우
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 2004
  • Turbo code has been adopted in the 3GPP standard, since its performance is very close to the Shannon limit. However, the turbo decoder requires a lot of computations and the amount of the memory increases as the block size of turbo codes becomes larger. In order to reduce the complexity of the turbo decoder, the Log-MAP, the Max-Log-MAP and the sliding window algorithm have been proposed. In this paper, the performance of turbo codes adopted in the 3GPP standard is analyzed by using the floating point and the fixed point implementation. The efficient decoding method is also proposed. It is shown that the BER performance of the proposed method is close to that of the Log-MAP algorithm.

Iterative Decoding for LDPC Coded MIMO-OFDM Systems with SFBC Encoding (주파수공간블록부호화를 적용한 MIMO-OFDM 시스템을 위한 반복복호 기법)

  • Sohn Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.402-406
    • /
    • 2005
  • A multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system using low-density parity-check (LDPC) code and iterative decoding is presented. The iterative decoding is performed by combining the zero-forcing technique and LDPC decoding through the use of the 'turbo principle.' The proposed system is shown to be effective with high order modulation and outperforms the space frequency block code (SFBC) method with iterative decoding.

Subsidiary Maximum Likelihood Iterative Decoding Based on Extrinsic Information

  • Yang, Fengfan;Le-Ngoc, Tho
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This paper proposes a multimodal generalized Gaussian distribution (MGGD) to effectively model the varying statistical properties of the extrinsic information. A subsidiary maximum likelihood decoding (MLD) algorithm is subsequently developed to dynamically select the most suitable MGGD parameters to be used in the component maximum a posteriori (MAP) decoders at each decoding iteration to derive the more reliable metrics performance enhancement. Simulation results show that, for a wide range of block lengths, the proposed approach can enhance the overall turbo decoding performance for both parallel and serially concatenated codes in additive white Gaussian noise (AWGN), Rician, and Rayleigh fading channels.

Error Resilience in Image Transmission Using LVQ and Turbo Coding

  • Hwang, Junghyeun;Joo, Sanghyun;Kikuchi, Hisakazu;Sasaki, Shigenobu;Muramatsu, Shogo;Shin, JaeHo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.478-481
    • /
    • 2000
  • In this paper, we propose a joint coding system for still images using source coding and powerful error correcting code schemes. Our system comprises an LVQ (lattice vector quantization) source coding for wavelet transformed images and turbo coding for channel coding. The parameters of the image encoder and channel encoder have been optimized for an n-D (dimension) cubic lattice (D$_{n}$, Z$_{n}$), parallel concatenation fur two simple RSC (recursive systematic convolutional code) and an interleaver. For decoding the received image in the case of the AWGN (additive white gaussian noise) channel, we used an iterative joint source-channel decoding algorithm for a SISO (soft-input soft-output) MAP (maximum a posteriori) module. The performance of transmission system has been evaluated in the PSNR, BER and iteration times. A very small degradation of the PSNR and an improvement in BER were compared to a system without joint source-channel decoding at the input of the receiver.ver.

  • PDF

The Presentation of Semi-Random Interleaver Algorithm for Turbo Code (터보코드에 적용을 위한 세미 랜덤 인터리버 알고리즘의 제안)

  • Hong, Sung-Won;Park, Jin-Soo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.536-541
    • /
    • 2000
  • Turbo code has excellent decoding performance but had limitations for real time communications because of the system complexity and time delay in decoding procedure. To overcome this problem, a new SRI(Semi-Random Interleaver) algorithm which realize the reduction of the interleaver size is proposed for reducing the time delay during the decoding prodedure. SRI compose the interleaver 0.5 size from the input data sequence. In writing the interleaver, data is recorded by row such as block interleaver. But, in reading, data is read by randomly and the text data is located by the just address simultaneously. Therefore, the processing time of with the preexisting method such as block, helical random interleaver.

  • PDF

Performance of Tactics Mobile Communication System Based on UWB with Double Binary Turbo Code in Multi-User Interference Environments (다중 사용자 간섭이 존재하는 환경에서 이중이진 터보부호를 이용한 UWB 기반의 전술이동통신시스템 성능)

  • Kim, Eun-Cheol;Seo, Sung-Il;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.39-50
    • /
    • 2010
  • In this paper, we analyze and simulate the performance of a tactics mobile communication system based on ultra wide band (UWB) in multi-user interference (MUI) environments. This system adopts a double binary turbo code for forward error correction (FEC). Wireless channel is modeled a modified Saleh and Valenzuela (SV) model. We employ a space time block coding (STBC) scheme for enhancing system performance. System performance is evaluated in terms of bit error probability. From the simulation results, it is confirmed that the tactics mobile communication system based on UWB, which is encoded with the double binary turbo code, can achieve a remarkable coding gain with reasonable encoding and decoding complexity in multi-user interference environments. It is also known that the bit error probability performance of the tactics mobile communication system based on UWB can be substantially improved by increasing the number of iterations in the decoding process for a fixed cod rate. Besides, we can demonstrate that the double binary turbo coding scheme is very effective for increasing the number of simultaneous users for a given bit error probability requirement.

Performance Analysis of Optical CDMA System with Cross-Layer Concept (계층간 교차 개념을 적용한 광 부호분할 다중접속 시스템의 성능 분석)

  • Kim, Jin-Young;Kim, Eun-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.13-23
    • /
    • 2009
  • In this paper, the network performance of a turbo coded optical code division multiple access (CDMA) system with cross-layer, which is between physical and network layers, concept is analyzed and simulated. We consider physical and MAC layers in a cross-layer concept. An intensity-modulated/direct-detection (IM/DD) optical system employing pulse position modulation (PPM) is considered. In order to increase the system performance, turbo codes composed of parallel concatenated convolutional codes (PCCCs) is utilized. The network performance is evaluated in terms of bit error probability (BEP). From the simulation results, it is demonstrated that turbo coding offers considerable coding gain with reasonable encoding and decoding complexity. Also, it is confirmed that the performance of such an optical CDMA network can be substantially improved by increasing e interleaver length and e number of iterations in e decoding process. The results of this paper can be applied to implement the indoor optical wireless LANs.

Simple Stopping Criterion Algorithm using Variance Values of Noise in Turbo Code (터보부호에서 잡음 분산값을 사용한 간단한 반복중단 알고리즘)

  • Jeong Dae-Ho;Kim Hwan-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.103-110
    • /
    • 2006
  • Turbo code, a kind of error correction coding technique, has been used in the field of digital mobile communication system. As the number of iterations increases, it can achieves remarkable BER performance over AWGN channel environment. However, if the number of iterations Is increases in the several channel environments, any further iteration results in very little improvement, and requires much delay and computation in proportion to the number of iterations. To solve this problems, it is necessary to device an efficient criterion to stop the iteration process and prevent unnecessary delay and computation. In this paper, it proposes an efficient and simple criterion for stopping the iteration process in turbo decoding. By using variance values of noise derived from mean values of LLR in turbo decoder, the proposed algorithm can largely reduce the computation and average number of iterations without BER performance degradation. As a result of simulations, the computation of the proposed algorithm is reduced by about $66{\sim}80%$ compared to conventional algorithm. The average number of iterations is reduced by about $13.99%{\sim}15.74%$ compared to CE algorithm and about $17.88%{\sim}18.59%$ compared to SCR algorithm.

Design of a Low Power Turbo Decoder by Reducing Decoding Iterations (반복 복호수 감소에 의한 저전력 터보 복호기의 설계)

  • Back, Seo-Young;Kim, Sik;Back, Seo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.1-8
    • /
    • 2004
  • This paper proposes a novel algorithm for a low power turbo decoder based on reduction of number of decoding iterations, targeting power-critical mobile communication devices. Previous researches that attempt to reduce number of decoding iterations, such as CRC-aided and LLR methods, either show degraded BER performance in return for reduced complexity or require additional hardware resources for controlling the number of iterations to meet BER performance, respectively. The proposed algorithm can reduce power consumption without degrading the BER performance, and it is achieved with minimal hardware overhead. The proposed algorithm achieves this by comparing consecutive hard decision results using a simple buffer and counter. Simulation results show that the number of decoding iterations can be reduced to about 60% without degrading the BER performance in the proposed decoder, and power consumption can be saved in proportion to the number of decoding iterations.

Performance Analysis of SOVA by Robust Equalization, Techniques in Nongaussian Noise Channel (비가우시안 잡음 채널에서 Robust 등화기법을 이용한 터보 부호의 SOVA 성능분석)

  • Soh, Surng-Ryurl;Lee, Chang-Bum;Kim, Yung-Kwon;Chung, Boo-Young
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.257-265
    • /
    • 2000
  • Turbo Code decoder is an iterate decoding technology, which extracts extrinsic information from the bit to be decoded by calculating both forward and backward metrics in each decoding step, and uses the information to the next decoding step. Viterbi decoder, which is for a convolutional code, runs continuous mode, while Turbo Code decoder runs by block unit. There are algorithms used in a decoder : which are MAP(maximum a posteriori) algorithm requiring very complicated calculation and SOVA(soft output Viterbi algorithm) using Viterbi algorithm suggested by Hagenauer, and it is known that the decoding performance of MAP is better. The result of this make experimentation shows that the performance of SOVA, which has half complex algorithm compare to MAP, is almost same as the performance of MAP when the SOVA decoding performance is supplemented with Robust equalization techniques.

  • PDF