• Title/Summary/Keyword: Turbo Interleaver

Search Result 74, Processing Time 0.024 seconds

Turbo Coded OFDM Scheme for a High-Speed Power Line Communication (고속 전력선 통신을 위한 터보 부호화된 OFDM)

  • Kim, Jin-Young;Koo, Sung-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.141-150
    • /
    • 2010
  • In this paper, performance of a turbo-coded OFDM system is analyzed and simulated in a power line communication channel. Since the power line communication system typically operates in a hostile environment, turbo code has been employed to enhance reliability of transmitted data. The performance is evaluated in terms of bit error probability. As turbo decoding algorithms, MAP (maximum a posteriori), Max-Log-MAP, and SOVA (soft decision viterbi output) algorithms are chosen and their performances are compared. From simulation results, it is demonstrated that Max-Log-MAP algorithm is promising in terms of performance and complexity. It is shown that performance is improved 3dB by increasing the number of iterations, 2 to 8, and interleaver length of a turbo encoder, 100 to 5000. The results in this paper can be applied to OFDM-based high-speed power line communication systems.

Serial Concatenated Turbo TCM Coding Scheme for Enhanced VSB (개선된 VSB 수신 시스템을 위한 직렬 연접 터보 격자변조부호 방식)

  • Heo, Seo-Weon;Kim, Chang-Joong;Lee, Ho-Kyoung
    • Journal of Broadcast Engineering
    • /
    • v.12 no.4
    • /
    • pp.373-376
    • /
    • 2007
  • Recently, research on the enhancement of the conventional VSB scheme for DTV signal transmission have been done. Not to affect on the performance of the widely spread conventional receivers and at the same time be able to receive the enhanced stream. there have been efforts to enhance the coding scheme which is backward compatible with the conventional method. The conventional schemes proposed so far is based on the idea of combining a new trellis encoder with the standard 8-VSB trellis encoder. In this paper, we Propose serial concatenated turbo TCM scheme which combines two trellis encoder with the interleaver between them. We compare the performance of the proposed scheme and the existing scheme through computer simulation.

The Performance Estiamtion of Turbo Internal Interleaver Using Weight Distribution of Codewords (부호어의 무게 분포를 통한 터보 인터리버의 성능 분석)

  • 고태환;김주민;정덕진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.173-179
    • /
    • 2002
  • In this paper, we suggest more precise performance analysis method of turbo interleavers based on two criteria; performance bounds like Union Bound and weight frequency of codewords. In order to present our new method, we employ block pseudo random, and so-called prime interleavers in compliance of 3GPP standard, respectively, We also applied this method to S-random interleavers that have different window size, S. 3GPP complied turbo encoder, decoder, and AWGN channel are implemented by using MATLAB for our performance analysis. According to our analysis, both criteria should be taken into account coincidently to predict the performance of newly designed interleavers.

Performance Analysis of MAP Algorithm by Robust Equalization Techniques in Nongaussian Noise Channel (비가우시안 잡음 채널에서 Robust 등화기법을 이용한 터보 부호의 MAP 알고리즘 성능분석)

  • 소성열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1290-1298
    • /
    • 2000
  • Turbo Code decoder is an iterate decoding technology, which extracts extrinsic information from the bit to be decoded by calculating both forward and backward metrics, and uses the information to the next decoding step Turbo Code shows excellent performance, approaching Shannon Limit at the view of BER, when the size of Interleaver is big and iterate decoding is run enough. But it has the problems which are increased complexity and delay and difficulty of real-time processing due to Interleaver and iterate decoding. In this paper, it is analyzed that MAP(maximum a posteriori) algorithm which is used as one of Turbo Code decoding, and the factor which determines its performance. MAP algorithm proceeds iterate decoding by determining soft decision value through the environment and transition probability between all adjacent bits and received symbols. Therefore, to improve the performance of MAP algorithm, the trust between adjacent received symbols must be ensured. However, MAP algorithm itself, can not do any action for ensuring so the conclusion is that it is needed more algorithm, so to decrease iterate decoding. Consequently, MAP algorithm and Turbo Code performance are analyzed in the nongaussian channel applying Robust equalization technique in order to input more trusted information into MAP algorithm for the received symbols.

  • PDF

Performance Analysis of Optical CDMA System with Cross-Layer Concept (계층간 교차 개념을 적용한 광 부호분할 다중접속 시스템의 성능 분석)

  • Kim, Jin-Young;Kim, Eun-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.13-23
    • /
    • 2009
  • In this paper, the network performance of a turbo coded optical code division multiple access (CDMA) system with cross-layer, which is between physical and network layers, concept is analyzed and simulated. We consider physical and MAC layers in a cross-layer concept. An intensity-modulated/direct-detection (IM/DD) optical system employing pulse position modulation (PPM) is considered. In order to increase the system performance, turbo codes composed of parallel concatenated convolutional codes (PCCCs) is utilized. The network performance is evaluated in terms of bit error probability (BEP). From the simulation results, it is demonstrated that turbo coding offers considerable coding gain with reasonable encoding and decoding complexity. Also, it is confirmed that the performance of such an optical CDMA network can be substantially improved by increasing e interleaver length and e number of iterations in e decoding process. The results of this paper can be applied to implement the indoor optical wireless LANs.

A Low Power QPP Interleaver Address Generator Design Using The Periodicity of QPP (QPP 주기성을 이용한 저전력 QPP 인터리버 주소발생기 설계)

  • Lee, Won-Ho;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.83-88
    • /
    • 2008
  • The QPP interleaver has been gaining attention since it provides contention-free interleaving functionality for high speed parallel turbo decoders. In this paper we first show that the quadratic term $f_2x^2%K$ of $f(x)=(f_1x+f_2x^2)%K$, the address generating function, is periodic. We then introduce a low-power address generator which utilizes this periodic characteristic. This generator follows the conventional method to generate the interleaving addresses and also to save the quadratic term values during the first half of the first period. The saved values are then reused for generating further interleaved addresses, resulting in reduced number of logical operations. Power consumption is reduced by 27.38% in the design with fixed-K and 5.54% in the design with unfixed-K on average for various values of K, when compared with the traditional designs.

Performance Analysis of Underwater Acoustic Communication Systems with Turbo Equalization in Korean Littoral Sea (한국 연근해 환경에서 터보 등화기를 이용한 수중음향통신 시스템 성능 분석)

  • Park, Tae-Doo;Han, Jeong-Woo;Jung, Ji-Won;Kim, Ki-Man;Lee, Sang-Kook;Chun, Seung-Yong;Son, Kweon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.124-130
    • /
    • 2013
  • The performance of underwater acoustic communication system is sensitive to the ISI(Inter-Symbol Interference) due to delay spread develop of multipath signal propagation. The equalizer is used to combat the ISI. In this paper, the performances of underwater acoustic communication with turbo equalizer were evaluated by real data collected in Korean littoral sea. As a result, when one iterative decoding using turbo equalizer is applied, the performance was improved 1.5 dB than the case of the non-iterative equalizer at BER $10^{-4}$. In the case of two or three iterations the performance was enhanced about 3.5 dB, but the performance wasn't improved any more in the case of more than three times.

Implementation of UEP using Turbo Codes and EREC Algorithm for Video Transmission (동영상 전송을 위하여 터보코드와 EREC알고리즘을 이용한 UEP설계)

  • 심우성;허도근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.994-1004
    • /
    • 2000
  • In this paper, bitstreams are composed of using H.263 for a moving picture coding in the band-limited and error-prone environment such as wireless environment. EREC sub-frames are implemented by applying the proposed EREC algorithm in order to be UEP for the real data parts of implemented bitstreams. Because those are able to do resynchronization with a block unit, propagation of the error can be minimized, and the position of the important bits such as INTRADC and MVD can be known. Class is separated using the position of these important bits, and variable puncturing tables are designed by the class informations and the code rates of turbo codes are differently designed in according to the class. Channel coding used the turbo codes, and an interleaver to be designed in the turbo codes does not eliminate redundancy bits of the important bits in applying variable code rates of EREC sub-frames unit and is always the same at the transmitter and the receiver although being variable frame size. As a result of simulation, UEP with the code rate similar to EEP is obtained a improved result in the side of bit error probability. And the result of applying it to image knows that the subjective and objective quality have been improved by the protection of important bits.

  • PDF

Error Resilience in Image Transmission Using LVQ and Turbo Coding

  • Hwang, Junghyeun;Joo, Sanghyun;Kikuchi, Hisakazu;Sasaki, Shigenobu;Muramatsu, Shogo;Shin, JaeHo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.478-481
    • /
    • 2000
  • In this paper, we propose a joint coding system for still images using source coding and powerful error correcting code schemes. Our system comprises an LVQ (lattice vector quantization) source coding for wavelet transformed images and turbo coding for channel coding. The parameters of the image encoder and channel encoder have been optimized for an n-D (dimension) cubic lattice (D$_{n}$, Z$_{n}$), parallel concatenation fur two simple RSC (recursive systematic convolutional code) and an interleaver. For decoding the received image in the case of the AWGN (additive white gaussian noise) channel, we used an iterative joint source-channel decoding algorithm for a SISO (soft-input soft-output) MAP (maximum a posteriori) module. The performance of transmission system has been evaluated in the PSNR, BER and iteration times. A very small degradation of the PSNR and an improvement in BER were compared to a system without joint source-channel decoding at the input of the receiver.ver.

  • PDF

Performance of Turbo Coded OFDM Systems in W-CDMA Wireless Communication Channel (W-CDMA 무선통신 채널에서 터보 부호를 적용한 OFDM 시스템의 성능 분석)

  • Shin, Myung-Sik;Yang, Hae-Sool
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.183-191
    • /
    • 2010
  • In the recent digital communication systems, the performance of Turbo Code used as the error correction coding method depends on the interleaver size influencing the free distance determination and the iterative decoding algorithms of the turbo decoder. However, some iterations are needed to get a better performance, but these processes require a large time delay. Recently methods of reducing the number of iteration have been studied without degrading original performance. In this paper, the new method of combining ME (Mean Estimate) stopping criterion with SDR (sign difference ratio) stopping criterion among previous stopping criteria is proposed, and the fact of compensating each method's missed detection is verified. Faster decoding is realized that about 1~2 time iterations to reduced through adopting this method into serially concatenated both decoders. System Environments were assumed W-CDMA forward link system with intense MAI (multiple access interference).