• Title/Summary/Keyword: Turbo Code Channel Coding

Search Result 78, Processing Time 0.02 seconds

A Low Density Parity Check Coding using the Weighted Bit-flipping Method (가중치가 부과된 Bit-flipping 기법을 이용한 LDPC 코딩)

  • Joh, Kyung-Hyun;Ra, Keuk-Hwan
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.115-121
    • /
    • 2006
  • In this paper, we proposed about data error check and correction on channel transmission in the communication system. LDPC codes are used for minimizing channel errors by modeling AWGN Channel as a VDSL system. Because LDPC Codes use low density parity bit, mathematical complexity is low and relating processing time becomes shorten. Also the performance of LDPC code is better than that of turbo code in long code word on iterative decoding algorithm. This algorithm is better than conventional algorithms to correct errors, the proposed algorithm assigns weights for errors concerning parity bits. The proposed weighted Bit-flipping algorithm is better than the conventional Bit-flipping algorithm and we are recognized improve gain rate of 1 dB.

An Optimal Space Time Coding Algorithm with Zero Forcing Method in Underwater Channel (수중통신에서 Zero Forcing기법을 이용한 최적의 시공간 부호화 알고리즘)

  • Kwon, Hae-Chan;Park, Tae-Doo;Chun, Seung-Yong;Lee, Sang-Kook;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.349-356
    • /
    • 2014
  • In the underwater communication, the performance of system is reduced because of the inter-symbol interference occur by the multi-path. In the recent years, to deal with poor channel environment and improve the throughput, the efficient concatenated structure of equalization, channel codes and Space Time Codes has been studied as MIMO system in the underwater communication. Space Time Codes include Space Time Block Codes and Space Time Trellis Codes in underwater communication. Space Time Trellis Codes are optimum for equalization and channel codes among the Space Time Codes to apply in the MIMO environment. Therefore, in this paper, turbo pi codes are used for the outer code to efficiently transmit in the multi-path channel environment. The inner codes consist of Space Time Trellis Codes with transmission diversity and coding gain in the MIMO system. And Zero Forcing method is used to remove inter-symbol interference. Finally, the performance of this model is simulated in the underwater channel.

Lightweight video coding using spatial correlation and symbol-level error-correction channel code (공간적 유사성과 심볼단위 오류정정 채널 코드를 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.188-199
    • /
    • 2008
  • In conventional video coding, encoder complexity is much higher than that of decoder. However, investigations for lightweight encoder to eliminate motion prediction/compensation claiming most complexity in encoder have recently become an important issue. The Wyner-Ziv coding is one of the representative schemes for the problem and, in this scheme, since encoder generates only parity bits of a current frame without performing any type of processes extracting correlation information between frames, it has an extremely simple structure compared to conventional coding techniques. However, in Wyner-Ziv coding, channel decoding errors occur when noisy side information is used in channel decoding process. These channel decoding errors appear more frequently, especially, when there is not enough correlation between frames to generate accurate side information and, as a result, those errors look like Salt & Pepper type noise in the reconstructed frame. Since this noise severely deteriorates subjective video quality even though such noise rarely occurs, previously we proposed a computationally extremely light encoding method based on selective median filter that corrects such noise using spatial correlation of a frame. However, in the previous method, there is a problem that loss of texture from filtering may exceed gain from error correction by the filter for video sequences having complex torture. Therefore, in this paper, we propose an improved lightweight encoding method that minimizes loss of texture detail from filtering by allowing information of texture and that of noise in side information to be utilized by the selective median filter. Our experiments have verified average PSNR gain of up to 0.84dB compared to the previous method.

Transmission Techniques for Downlink Multi-Antenna MC-CDMA Systems in a Beyond-3G Context

  • Portier Fabrice;Raos Ivana;Silva Adao;Baudais Jean-Yves;Helard Jean-Francois;Gameiro Atilio;Zazo Santiago
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.157-170
    • /
    • 2005
  • The combination of multiple antennas and multi-carrier code division multiple-access (MC-CDMA) is a strong candidate for the downlink of the next generation mobile communications. The study of such systems in scenarios that model real-life trans-missions is an additional step towards an optimized achievement. We consider a realistic MIMO channel with two or four transmit antennas and up to two receive antennas, and channel state information (CSI) mismatches. Depending on the mobile terminal (MT) class, its number of antennas or complexity allowed, different data-rates are proposed with turbo-coding and asymptotic spectral efficiencies from 1 to 4.5 bit/s/Hz, using three algorithms developed within the European IST-MATRICE project. These algorithms can be classified according to the degree of CSI at base-station (BS): i) Transmit space-frequency prefiltering based on constrained zero-forcing algorithm with complete CSI at BS; ii) transmit beamforming based on spatial correlation matrix estimation from partial CSI at BS; iii) orthogonal space-time block coding based on Alamouti scheme without CSI at BS. All presented schemes require a reasonable complexity at MT, and are compatible with a single-antenna receiver. A choice between these algorithms is proposed in order to significantly improve the performance of MC-CDMA and to cover the different environments considered for the next generation cellular systems. For beyond-3G, we propose prefiltering for indoor and pedestrian microcell environments, beamforming for suburban macrocells including high-speed train, and space-time coding for urban conditions with moderate to high speeds.

Performance of Turbo Coded OFDM Systems in W-CDMA Wireless Communication Channel (W-CDMA 무선통신 채널에서 터보 부호를 적용한 OFDM 시스템의 성능 분석)

  • Shin, Myung-Sik;Yang, Hae-Sool
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.183-191
    • /
    • 2010
  • In the recent digital communication systems, the performance of Turbo Code used as the error correction coding method depends on the interleaver size influencing the free distance determination and the iterative decoding algorithms of the turbo decoder. However, some iterations are needed to get a better performance, but these processes require a large time delay. Recently methods of reducing the number of iteration have been studied without degrading original performance. In this paper, the new method of combining ME (Mean Estimate) stopping criterion with SDR (sign difference ratio) stopping criterion among previous stopping criteria is proposed, and the fact of compensating each method's missed detection is verified. Faster decoding is realized that about 1~2 time iterations to reduced through adopting this method into serially concatenated both decoders. System Environments were assumed W-CDMA forward link system with intense MAI (multiple access interference).

Performance Analysis of Coded-OFDM for Wireless Multimedia Communication (무선멀티미디어 통신을 위한 Coded-OFDM의 성능 해석)

  • 김창선;김성곤;이창호;변건식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.196-201
    • /
    • 2002
  • OFDM(orthogonal Frequency Division Multiplex) modulates transmitting data with many carriers in parallel. As a result, high-speed data transmission is carried out and high spectral efficiency is provided by overlapping orthogonal frequencies. Therefore, OFDM is applied to many communication systems. In this paper, according to modulation methods(M-PSK and M-QAM), coded-OFDM wireless communication is simulated. Turbo code is used and two channels(virtual and real channel) are used. both channels have multipath delay spread, Gaussian noise, and peak power clipping. As a result of the simulation, coding gain is about 3dB and it is proved that M-QAM modulation is better than M-PSK. Start after striking space key 2 times.

Implementation of Turbo Decoder Based on Two-step SOVA with a Scaling Factor (비례축소인자를 가진 2단 SOVA를 이용한 터보 복호기의 설계)

  • Kim, Dae-Won;Choi, Jun-Rim
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.11
    • /
    • pp.14-23
    • /
    • 2002
  • Two implementation methods for SOVA (Soft Output Viterbi Algorithm)of Turbo decoder are applied and verfied. The first method is the combination of a trace back (TB) logic for the survivor state and a double trace back logic for the weight value in two-step SOVA. This architecure of two-setp SOVA decoder allows important savings in area and high-speed processing compared with that of one-step SOVA decoding using register exchange (RE) or trace-back (TB) method. Second method is adjusting the reliability value with a scaling factor between 0.25 and 0.33 in order to compensate for the distortion for a rate 1/3 and 8-state SOVA decoder with a 256-bit frame size. The proposed schemes contributed to higher SNR performance by 2dB at the BER 10E-4 than that of SOVA decoder without a scaling factor. In order to verify the suggested schemes, the SOVA decoder is testd using Xillinx XCV 1000E FPGA, which runs at 33.6MHz of the maximum speed with 845 latencies and it features 175K gates in the case of 256-bit frame size.

Joint Demodulation and Decoding System for FTN (FTN 시스템을 위한 동시 복조 및 복호 기법)

  • Kang, Donghoon;Oh, Wangrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • In this paper, we propose an efficient joint demodulation and decoding scheme for FTN (Faster than Nyquist) systems. Several previous works have demonstrated that ISI (Inter Symbol Interference) cancellation schemes based on BCJR (Bahl-Cocke-Jelinek-Raviv) algorithm are suitable for FTN systems. Unfortunately, required complexity of the previous ISI cancellation schemes is very high, especially when a multi-level modulation scheme is employed. In this paper, we propose a joint demodulation and decoding scheme for FTN systems with an iteratively decodable channel coding scheme and a multi-level modulation. Compared with the previously proposed schemes, the proposed scheme not only offers reliable performance but also requires relatively low complexity. Also, the proposed scheme can be easily applied to the FTN system with a multi-level modulation with a minor modification.