• Title/Summary/Keyword: Turbine valve

Search Result 128, Processing Time 0.03 seconds

Study on Evaluation of Internal Leak of Turbine Control Valve in Power Plant Using Acoustic Emission Signal Measurement (음향방출 계측에 의한 터빈 제어밸브 내부누설 평가연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.65-70
    • /
    • 2008
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the turbine major valves relating to safety for turbine operating and prevention of turbine trouble at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized electro-hydraulic control oil flowed through turbine electro-hydraulic controller oil check valve and turbine power/trip fluid solenoid valve in the condition of actual turbine operating. The acoustic emission method was applied to the valves at the site, and the background noise was measured far the abnormal plant condition. To judge for the leak existence ell the object valves, voltage analysis and frequency analysis of acoustic signal emitted from infernal leak in the valve operating condition are performed. It was conformed that acoustic emission method could monitor for valve internal leak to high sensitivity.

  • PDF

The Reliability Evaluation of TBN Valve Testing Extension in NPP (원자력발전소 터빈밸브 시험주기 연장시 신뢰도평가)

  • Lim, Hyuk-Soon;Lee, Eun-Chan;Lee, Keun-Sung;Hwang, Seok-Won;Seong, Ki-Yeoul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3221-3223
    • /
    • 2007
  • Recently, nuclear power plant companies have been extending the turbine valve test interval to reduce the potential of the reactor trip accompanied with a turbine valve test and to improve the NPP's economy through the reduction of unexpected plant trip or decreased operation. In these regards, the extension of the test interval for turbine valves was reviewed in detail. The effect on the destructive overspeed probability due to the test interval change of turbine valves is evaluated by Fault Tree Analysis(FTA) method. Even though the test interval of turbine valves is changed from 1 month to 3 months, the analysis result shows that the reliability of turbine over speed protection system meets acceptance criteria of 1.0E-4/yr. This result will be used as the technical basis on the extension of the test interval for turbine valves. In this paper, the propriety of the turbine valve test interval extension is explained through the review on the turbine valve test interval status of turbine overspeed protection system, the analysis on the annual turbine missile frequency and the probability evaluation of the destructive overspeed due to the test interval extension.

  • PDF

Abnormal Vibration of Turbine Control Valve due to Resonance (공진에 의한 터빈 Control Valve 이상 진동)

  • Koo, Jae-Raeyang;Kim, Sung-Hwi;Koo, Woo-Sik;Lee, Woo-Kwang;Kim, Yeon-Hwan;Hwang, Jae-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2100-2104
    • /
    • 2004
  • Amount of Electricity which product generator decide control valve at Turbine. Operating method of Control valve have two mode. First operating method is Partial Arc Admission, and second operating method is Full Arc Admission. Failure of Control Valve have on serious damage electricity lineage. In this Paper, We have investigated resonance that Control Valve spring casing.

  • PDF

Service Life Analysis of Control Valve for Automatic Turbine Startup of Thermal Power Plant (화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석)

  • Kim, Hyo-Jin;Kang, Yong-Ho;Shin, Cheul-Gyu;Park, Hee-Sung;Yu, Bong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.7-12
    • /
    • 2000
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable ${\Delta}T$ limit curve during the startup. Because allowable ${\Delta}T$ limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage and combined rupture and low cycle fatigue damage criterion proposed for yielding the allowable ${\Delta}T$ limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has peformed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ${\Delta}T$ limit curve.

  • PDF

Service Life Analysis of Control Valve far Automatic Turbine Startup of Thermal Power Plant (화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석)

  • Kim, Hyo-Jin;Gang, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable △T limit currie during the startup. Because allowable ΔT limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage, combined rupture and low cycle fatigue damage criterion were proposed for yielding the allowable ΔTf limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has been performed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ΔT limit curve.

A Numerical Study on Effects of Flow Analysis with Flow Control Valve on Turbine of OWC Type Wave Power Generator (유량 조절 밸브가 탑재된 진동수주형 파력발전장치의 터빈 내 유동해석을 위한 수치해석 연구)

  • Ro, Kyoung-Chul;Oh, Jae-Won;Kim, Gil-won;Lee, Jung-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.801-808
    • /
    • 2021
  • In this paper, a numerical analysis was conducted on the effect of the flow control valve of a oscillation water column(OWC) type wave power generator turbine. The OWC wave power turbine operates with compressed air in the air chamber according to the change of wave height. When the wave height changes rapidly, a flow control valve is required due to overload of the turbine and reduced efficiency. Therefore, in this paper, a flow control valve with an opening angle of 60 degrees was installed in the front of the turbine, and the pressure drop, torque, and overall performance were calculated according to the change of turbine RPM and flow rate of turbine inlet. In conclusion, the flow control valve with an opening angle of 60 degrees affects when the turbine rotates at low rotation and the inlet flow rate is large. But it does not have a significant effect on overall turbine performance and it is necessary to find the optimal angle in the future works.

The Minimization of Generator Output Variations by Impulse Chamber Pressure Control during Turbine Valve Test (터빈 밸브시험 중 충동실 압력제어에 의한 발전기 출력변동 최소화)

  • Choi, In-Kyu;Kim, Jong-An;Park, Doo-Yong;Woo, Joo-Hee;Shin, Jae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.152-159
    • /
    • 2010
  • This paper describes the actual application of a feedback control loop as a means for minimizing turbine impulse chamber pressure variation during the turbine steam valve tests at a 1,000 MW nuclear power plant. The chamber pressure control loop was implemented in the new digital control system which was installed as a replacement for the old analog type control system. There has been about 40MW of the generator output change during the steam valve tests, especially the high pressure governing valve tests, because the old control system had not the impulse chamber pressure control so the operators had to compensate steam flow drop manually. The process of each valve test consists of a closing process and an reopening process and the operators can make sure that the valves are in their sound conditions by checking the valves movement. The control algorithm described in this paper contributed to keep the change in megawatt only to 6MW during the steam valve tests. Thereby, the disturbance to reactor control was reduced, and the overall plant control system's stability was greatly improved as well.

Analysis of the Dynamic Characteristics of Pressurized Water Discharging System for Underwater Launch using ATP (수중발사를 위한 ATP 방식 압축수 방출시스템의 동특성 해석)

  • Han, Myung-Chul;Kim, Jung-Kwan;Kim, Kwang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.567-572
    • /
    • 2009
  • The underwater launch system using an ATP consists of five parts: compressor tank, proportional flow control servo valve, expulsion spool valve, air turbine pump, and discharge tube. The purpose of this study is to develop an underwater launch system using an ATP and to verify the validity of the system. The proportional flow control servo valve is modeled as a 2nd order transfer function. The projectile is ejected by pressurized water through the air turbine pump, which is controlled by expulsion valve. The mathematical model is derived to estimate the dynamic characteristics of the system, and the important design parameters are derived by using simulations. The computer simulation results show the dynamic characteristics and the possibility of control for underwater launch system.

Turbine Speed Control at Steam Turbine Power Plant using control valve of long time constant (응동속도가 늦은 제어밸브에서의 가변이득을 이용한 증기터빈 발전소의 터빈 속도제어)

  • Woo, Joo-Hee;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2593-2595
    • /
    • 2000
  • We analyzed an existing turbine speed control logic in steam turbine power plant. If it is too late to respond a valve position demand signal, it is difficult to control turbine speed. In this paper we proposed a modified control logic and showed a good result by computer simulation.

  • PDF

The development of turbine valve actuator efficiency analysis system for the standard power plants (표준형 발전소용 터빈 밸브 작동기 성능 분석 시스템 개발)

  • Roh, J.H.;Kim, S.H.;Lee, D.I.;Yang, C.K.;Shin, Y.Y.;Jung, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.537-541
    • /
    • 2002
  • This paper is about the development of the turbine valve actuator efficiency analysis system for the standard power plants. We developed hydraulic power unit and turbine valve actuator controller. We designed control algorithm for turbine valve actuator, implemented and verified it at the industrial plants.

  • PDF