• Title/Summary/Keyword: Turbine type

Search Result 804, Processing Time 0.026 seconds

Development of 6kW ZVS Boost Converter by 4-Parallel Operation (4-병렬 제어 기법을 적용한 6kW 영전압 스위칭 승압형 컨버터 개발)

  • Rho, Min-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • This paper presents development of 6kw ZVS(Zero Voltage Switching) boost converter by 4-parallel operation. To realize a high capacity converter with 6 kw, 4-parallel operation of 1.5kW unit module is proposed in this paper. To meet high ratio input to output voltage, isolated type booster converter is designed. To achieve ZVS operation of 4-switches of full bridge and protect a voltage overshoot caused by switch turn-off, simple active-clamp circuit is applied to the primary side. For parallel operation of 4-modules, master-slave control method is proposed to achieve input current sharing of 4-unit converter modules accurately. For performance tests, simulation is carried out. Also, load and experimental tests of the developed booster converter, 230Vdc/6kW, are carried out under various conditions. For field tests, the developed converter is applied for boosting a battery power to high DC_link voltage for a VSI inverter which starts a micro-turbine(MT) installed in vehicle and it's performance is verified through high speed motoring a MT up to tens of thousands of rpm.

A study on equivalent control device model for power system reduction (전력 계통 축약을 위한 등가 제어기 모델에 관한 연구)

  • Lee, H.M.;Rho, K.M.;Jang, B.H.;Kwon, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.273-275
    • /
    • 1999
  • This paper presents a dynamic equivalencing method in large electric power system for stability analysis. This method of modeling simplified equivalents for parts of the network outside the study area is to evaluate the stability of a study area modeled in detail. Generators are closely coupled in an electrical sense tend to swing together in groups during disturbances, and this behavior can be exploited to reduce the size of the power system model. The characteristics of generators swing together are referred to as coherency Coherency groups whose generators state trajectory are similar to the other generators state trajectory in the same coherency group by a certain disturbance. In this paper, procedures for forming dynamic equivalents of control devices of coherency-based generating units are proposed and the aggregation of the control devices such as excitation system and governor-turbine system is accomplished by this method. This method can deal with the aggregation of the same type of control devices and combination of hydro and steam unit or the many types of excitation systems. etc. This method is shown to be efficient in reducing the number of control device of generating units with small error in the study group by result of case study presented latter part of this paper.

  • PDF

A Study on Fault Detection of a Turboshaft Engine Using Neural Network Method

  • Kong, Chang-Duk;Ki, Ja-Young;Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.100-110
    • /
    • 2008
  • It is not easy to monitor and identify all engine faults and conditions using conventional fault detection approaches like the GPA (Gas Path Analysis) method due to the nature and complexity of the faults. This study therefore focuses on a model based diagnostic method using Neural Network algorithms proposed for fault detection on a turbo shaft engine (PW 206C) selected as the power plant for a tilt rotor type unmanned aerial vehicle (Smart UAV). The model based diagnosis should be performed by a precise performance model. However component maps for the performance model were not provided by the engine manufacturer. Therefore they were generated by a new component map generation method, namely hybrid method using system identification and genetic algorithms that identifies inversely component characteristics from limited performance deck data provided by the engine manufacturer. Performance simulations at different operating conditions were performed on the PW206C turbo shaft engine using SIMULINK. In order to train the proposed BPNN (Back Propagation Neural Network), performance data sets obtained from performance analysis results using various implanted component degradations were used. The trained NN system could reasonably detect the faulted components including the fault pattern and quantity of the study engine at various operating conditions.

Analysis of Flow through High Pressure Bypass Valve in Power Plant (발전소용 고압 바이패스 밸브 내부 유동해석)

  • Cho, An-Tae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.

Bearing Pad Temperature Change Depending on the Preload of Vertical Journal Guide Bearing (수직형 저널 베어링에서 preload 변화에 따른 베어링 패드 온도 변화)

  • Kim, Jun-Sung;Kim, Du-Young;Kim, Dong-Kwan;Park, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.33-40
    • /
    • 2009
  • The temperature of vertical pump bearing metal in the pumped storage power plant has been high enough to shutdown the unit. Attempts such as decreasing the oil supply temperature, increasing the bearing oil gap etc. were performed to resolve the problem, but the issue was not resolved. Finally, the high bearing metal temperature was corrected by adjusting the bearing preload. The preload is formed by the oil wedge between the journal surface and bearing pad surface and the degree of preload is determined by the machined radial clearance, assembled radial clearance, rotor journal diameter etc. This paper focuses on the analysis of the preload depending on the bearing parameters and the result of the modification of the bearing following the analysis. The bearing metal temperature dropped as much as $20^{\circ}C$ which was similar as expected by software calculation. But the shaft vibration could increase when the assembled radial clearance is excessive. So, the adjustment of the bearing preload for the tilting pad type journal bearing should be carefully performed.

Structural Design of a 750kW Composite Wind Turbine Blade (750kW급 풍력발전기용 복합재 블레이드의 구조설계)

  • Jung C.K.;Park S.H.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.18-21
    • /
    • 2004
  • A GFRP based composite blade was developed for a 750kW wind energy conversion system of type class I. The blade sectional geometry was designed to have a general shell-spar structure. The load cases specified in the IEC61400-1 international specification were considered. For withstanding all relevant extreme loads, the structural analysis for the complete blade was performed using a commercial FEM code. The static load carrying capacity, buckling stability, blade tip deflection and natural frequencies at various rotational speeds were evaluated to satisfy the strength requirements in accordance with the IEC61400-1 and GL Regulations. For designing a lightweight blade, the thickness and the lay-up pattern of the skin-foam sandwich structures were optimized iteratively using the DOT program T-bolts were used for joining the blade root and the hub, which were modeled using a 3D FE volume model. In order to confirm the safety of the root connection, the static stresses of the thick root laminate and the steel. bolts were predicted by taking account of the bolt pretension and the root bending moments. The calculated stresses were compared with the material strengths.

  • PDF

Spray Characteristics of the Simplex Atomizer with Working Fluids (작동 유체에 따른 단순 압력식 연료노즐의 분무특성)

  • Choi, Chea-Hong;Lim, Byeong-Jun;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.41-47
    • /
    • 2009
  • This paper presents the spray characteristics of the simplex fuel nozzle with different working fluids for the gas turbine engine. Spray characteristics can be changed with viscosity, surface tension and density. In this research, water and test fluid type 2 which has similar characteristics of the kerosene are used as a working fluid. Spray visualization was performed by using ND-Yag laser and droplet size was measured by using PDPA(Phase doppler particle analyzer) system. The test results show that spray shapes and SMD distributions of two working fluids are similar at main spray region.

Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine

  • Zamani, Mahdi;Maghrebi, Mohammad Javad;Moshizi, Sajad A.
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.595-616
    • /
    • 2016
  • Providing high starting torque and efficiency simultaneously is a significant challenge for vertical axis wind turbines (VAWTs). In this paper, a new approach is studied in order to modify VAWTs performance and cogging torque. In this approach, J-shaped profiles are exploited in the structure of blades by means of eliminating the pressure side of airfoil from the maximum thickness toward the trailing edge. This new profile is a new type of VAWT airfoil using the lift and drag forces, thereby yielding a better performance at low TSRs. To simulate the fluid flow of the VAWT along with J-shaped profiles originated from NACA0018 and NACA0030, a two-dimensional computational analysis is conducted. The Reynolds Averaged Navier-Stokes (RANS) equations are closed using the two-equation Shear Stress Transport (SST) turbulence model. The main objective of the study is to investigate the effects of J-shaped straight blade thickness on the performance characteristics of VAWT. The results obtained indicate that opting for the higher thickness in J-shaped profiles for the blade sections leads the performance and cogging torque of VAWT to enhance dramatically.

Performance Analysis of Micro-turbine CHP System with Absorption Chiller (흡수식 칠러를 장착한 마이크로터빈 구동 열병합시스템의 성능 해석)

  • Yun, Rin;Han, Seung-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.540-545
    • /
    • 2007
  • The performance of microturbine CHP system equipped with an absorption chiller was analyzed by modelling of a microturbine and an absorption chiller. The microturbine having recuperator was simulated by the Brayton cycle model. The mass flow rate and available heat energy of the exhaust gas from the microtubune were simulated, and this results were utilized as input values for the generator of the absorption chiller. The absorption chiller is a single-effect air cooled type having solution heat exchanger. When heat input to the generator increased, the heat transfer rate and UA of the heat exchangers of the absorption chiller proportionally increased. Besides, the COP of the absorption chiller increased with increase of the heat input to the generator under the sufficient size of the evaporator condition. When the capacity of the CHP system increased from 30 to 60 kW, the mass flow rate of the LiBr for the absorption chiller increased by two times, and UA values for evaporator and condenser were increased by 3.9 and 3.4 times, respectively, under the same COP condition.

  • PDF

Low Frequency Dynamic Characteristics of Liquid-Propellant Rocket Engine Turbopump (액체추진제 로켓엔진 터보펌프 저주파 동특성)

  • Ha Seong-Up;Jung Young-Seok;Han SangYeop;Oh Seung-Hyub;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.26-35
    • /
    • 2004
  • As part of thrust control technology research on turbopump-fed type liquid-propellant rocket engine system, the low frequency dynamic characteristics of turbopump was investigated. It can be described that a turbopump system has a 1st-order lag element. When the value, which was resulted by subtraction of the variation of turbine moment with respect to the variation of revolution number from the variation of pump moment with respect to the variation of revolution number, was positive, the time constant of the 1st-order lag element was positive which stood for a stable system. Increasing the above-mentioned valve within positive range leaded to the increase of response and to the decrease of controllability.