• Title/Summary/Keyword: Turbine Rotor Profile

Search Result 40, Processing Time 0.023 seconds

Numerical Study of the Supersonic Turbine Performance Variation with respect to the Rotor Profile Diameter (터빈 동익의 프로파일 정의 위치에 따른 초음속 터빈 성능변화에 대한 전산해석 연구)

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.297-301
    • /
    • 2007
  • The blades of supersonic turbines with low aspect ratio are usually designed to have the same cross sectional shape in radial direction. The profile diameter definition of turbines may lead to produce unintended flow passage area variations resulting performance degradation. In this paper, the effects of profile diameter definition on the supersonic impulse turbine performance have been investigated. Computational results of three different profile diameters are compared. It has been found that flow passage area variation can be achieved according to designer's intention when blade profile is defined at rotor tip diameter. Furthermore, the turbine blade profile defined at rotor tip showed better performance than the others.

  • PDF

The Effect of Rotor Geometry on the Performance of a Wells Turbine for Wave Energy Conversion (Part I : The Effect of Sweep Ratio on Turbine Performance) (파력발전용 웰즈터빈의 동익형상이 성능에 미치는 영향 (제1보 : 스위프비의 영향))

  • Kim, Tai-Whan;Park, Sung-Soo;Setoguchi, T.;Takao, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.99-105
    • /
    • 2003
  • This paper presents the effect of rotor geometry on the performance of a small-scale Wells turbine for wave energy conversion. In this study, four kinds the Wells turbine of blade profile were selected from previous studies. The types of blade profile included in the papers are as follows: NACA0020 ; NACA0015; CA9; and HSIM 15-262123-1576. The experimental investigations have been performed for two solidities by testing model under steady flow conditions. The effect of blade profile on the running and starting characteristics under sinusoidal flow conditions have also been investigated by a numerical simulation based on a quasi-steady analysis. In addition, the effect of sweep on the turbine characteristics has been studied for the cases of CA9 and HSIM 15-262123-1576. Based on the evaluation, a suitable choice of these design factors has been suggested. As a result, it seems that a suitable choice of the sweep ratio of 0.35 for the blade profile of the Wells turbine.

An Experimental Study of the Performance Characteristics with Four Different Rotor Blade Shapes on a Small Mixed-Type Turbine

  • Cho Soo-Yong;Cho Tae-Hwan;Choi Sang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1478-1487
    • /
    • 2005
  • A small mixed-type turbine with a diameter of 19.9 mm has been substituted for a rotational part of pencil-type air tool. Usually, a vane-type rotor is applied to the rotational part of the air tool. However, the vane-type rotor has some problems, such as friction, abrasion, and necessity of accurate assembly etc.,. These problems make the life time of the vane-type air tool short, but air tools operated by mixed-type turbines are free of friction and abrasion because the turbine rotor dose not contact with the casing. Moreover, it is assembled easily because of no axis offset. These characteristics are merits for using air tools, but loss of power is inevitable on a non-contacting type rotor due to flow loss, tip clearance loss, and profile loss etc.,. In this study, four different rotors are tested, and their characteristics are investigated by measuring the specific output power. Additionally, optimum nozzle location against the rotor is studied. Output powers are obtained through measured pressure, temperature, torque, rotational speed, and flow rate. The experimental results obtained with four different rotors show that the rotor blade shape greatly influences to the performance, and the optimum nozzle location exists near the mid span of the rotor.

Design and Flow Analysis on the 1kW Class Horizontal Axis Wind Turbine Rotor Blade for Use in Southwest Islands Region (서남권 도서지역에 적합한 1kW급 수평축 풍력터빈 로터 블레이드 설계 및 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Yoon, Han-Yong;Cho, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.5-11
    • /
    • 2012
  • This study is to develop a 1kW-class horizontal axis wind turbine(HAWT) rotor blade which will be applicable to relatively low wind speed regions in southwest islands in Korea. Shape design of 1kW-class small wind turbine rotor blade is carried out using a blade profile with relatively high lift to drag ratio by blade element momentum theory(BEMT). Aerodynamic analysis on the newly designed rotor blade is performed with the variation of tip speed ratio. Power coefficient and pressure coefficient of the designed rotor blade are investigated according to tip speed ratio.

A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss

  • Cho, Soo-Yong;Yoon, Eui-Soo;Park, Bum-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1154-1164
    • /
    • 2002
  • Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30% axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1% total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.

A Study on the One-Stage 3-Dimensional Axial Turbine Performance Test with Different Incidence Angle (입사각 변경에 따른 단단 3차원 축류형 터빈의 성능시험에 관한 연구)

  • 조수용;박찬우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2001
  • An axial-type turbine design technology is developed. In order to design one-stage turbine, the preliminary design method is applied, and then design parameters are chosen after analyzing gas properties within the turbine passage using the streamline curvature method. Stator blade is designed using C4 profile, and rotor blade is designed using shape parameters. Stator is manufactured as an integral type and rotor is manufactured to be disassembled from the disc for changing blade incidence angle. The output power from the rotor is measured with various RPM and input power. Experimental results show that the maximum efficiency of turbine rotor is obtained on the design point, and the output power is proportionally decreased with the negative incidence angle even the test turbine is a reaction turbine. The efficiency of turbine rotor is decreased to 5% by $7.5^{\cire}$ negative incidence angle from the designed value.

  • PDF

Measurement of Heat (Mass) Transfer Coefficient on the Blade Surfaces of a Linear Turbine Rotor Cascade With a Four-Axis Naphthalene Profile Measuring System (4-축 나프탈렌 승화깊이 측정시스템을 이용한 터빈 블레이드 표면에서의 열(물질)전달계수 측정)

  • Kwon, Hyun-Goo;Lee, Sang-Woo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.42-47
    • /
    • 2001
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is successfully developed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiment is carried out at the free-stream Reynolds number and turbulence intensity of $2.09\times10^5$ and 1.2%. The results on the blade surfaces show that the local heat (mass) transfer on the suction surface is strongly influenced by the endwall vortices, but that on the pressure surface shows a nearly two-dimensional nature. The pressure surface has a more uniform distribution of heat load than the suction one.

  • PDF

The Effect of Rotor Geometry on the Performance of a Wells Turbine for Wave Energy Conversion (Part II : The Suitable Choice of Blade Design Factors) (파력발전용 웰즈터빈의 동익형상이 성능에 미치는 영향 (제2보 : 최적익형의 형상 제안))

  • Kim, Tai-Whan;Park, Sung-Soo;Setoguchi, T.;Takao, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.55-61
    • /
    • 2003
  • This paper represents the effect of rotor geometry on the performance of a small-scale Wells turbine for wave energy conversion. In this study, four kinds of blade profile were selected from previous studies with regard to the blade profile of the Wells turbine. The experimental investigations have been performed for two solidities by model testing under steady flow conditions, and then the effect of blade profile on the running and starting characteristics under sinusoidal flow conditions have been investigated by a numerical simulation using a quasi-steady analysis. In addition, the effect of sweep on the turbine characteristics has been investigated for the cases of CA9 and HSIM 15-262123-1576. As a result, a suitable choice of these design factors has been suggested.

Generation of 3D Model and Drawing of Rotor Using 2D Entity Groups with Attributes (속성이 부여된 2차원 엔터티 그룹을 이용한 로터의 3차원 모델 및 도면 생성)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.91-97
    • /
    • 2019
  • A method for generating 3D solid models and drawings for a rotor in the steam turbine is proposed. One of the most important design steps is generating the drawing for manufacturing it. This step is a very routine and time-consuming job because each drawing is composed of several kinds of views and many dimensions. To achieve automation for this activity, rotor profiles are composed of 2D entity groups with attributes. Based on this, the improved design process is developed as follows. First, the rotor profiles can be selected by searching for 2D entity groups using the related attributes. Second, the profiles are connected sequentially so that an entire rotor profile is determined. The completed profile is used to generate 2D drawings automatically, especially views, dimensions, and 3D models. The proposed method is implemented using a commercial CAD/CAM system, Unigraphics, and API functions written in C-language and applied to the rotor of steam turbines. Some illustrative examples are provided to show the effectiveness of the proposed method.

Measurements of Heat (Mass) Transfer Coefficient on the Surface of a Turbine Blade with n High Turning Angle Using Naphthalene Sublimation Technique (큰 회전각을 가지는 터빈 블레이드 표면에서 나프탈렌승화법을 이용한 열(물질)전달계수 측정)

  • Gwon, Hyeon-Gu;Lee, Sang-U;Park, Byeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1077-1087
    • /
    • 2002
  • The heat (mass) transfer characteristics on the blade surface of a high-turning first-stage turbine rotor for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is developed successfully for the measurements of local sublimation depth on the curved surface In the leading edge region, there is a good agreement between the present heat (mass) transfer data and the previous result on a turbine blade with a moderate turning angle, but some discrepancies are found in the mid-chord heat (mass) transfer between the two results. The local heat (mass) transfer on the present suction surface is greatly enhanced due to an earlier boundary transition, compared with that on a turbine blade with a moderate turning angle, meanwhile there is only a slight change in the pressure-side heat (mass) transfer between the two different turbine rotors. In general, the heat (mass) transfer augmentation by the endwall vortices is found much higher on the suction surface than on the pressure surface.