• 제목/요약/키워드: Turbine Rotor Blade

검색결과 338건 처리시간 0.025초

파력발전용 웰즈터빈의 동익형상이 성능에 미치는 영향 (제1보 : 스위프비의 영향) (The Effect of Rotor Geometry on the Performance of a Wells Turbine for Wave Energy Conversion (Part I : The Effect of Sweep Ratio on Turbine Performance))

  • 김태환;박성수;뇌호구 준명;고미 학
    • 한국태양에너지학회 논문집
    • /
    • 제23권2호
    • /
    • pp.99-105
    • /
    • 2003
  • This paper presents the effect of rotor geometry on the performance of a small-scale Wells turbine for wave energy conversion. In this study, four kinds the Wells turbine of blade profile were selected from previous studies. The types of blade profile included in the papers are as follows: NACA0020 ; NACA0015; CA9; and HSIM 15-262123-1576. The experimental investigations have been performed for two solidities by testing model under steady flow conditions. The effect of blade profile on the running and starting characteristics under sinusoidal flow conditions have also been investigated by a numerical simulation based on a quasi-steady analysis. In addition, the effect of sweep on the turbine characteristics has been studied for the cases of CA9 and HSIM 15-262123-1576. Based on the evaluation, a suitable choice of these design factors has been suggested. As a result, it seems that a suitable choice of the sweep ratio of 0.35 for the blade profile of the Wells turbine.

The wind tunnel measuring methods for wind turbine rotor blades

  • Vardar, Ali;Eker, Bulent
    • Wind and Structures
    • /
    • 제7권5호
    • /
    • pp.305-316
    • /
    • 2004
  • In this study, a wind tunnel, that has been developed for experiments of wind turbine rotor blades, has been considered. The deviations of the measurements have been examined after this wind tunnel had been introduced and the measurements on it had been explained. Two different wind turbine rotor blades miniatures have been used for getting better results from the experiments. The accuracy of measurements have been experimented three times repetitively and examined statistically. As a result, wind speed values which this type of wind tunnel and wind turbine rotors need for starting, wind speed in the tunnel, temperature and moisture values, the number of rotor's revolution, and the voltage that is produced in 102 ${\Omega}$ resistance and current values have been determined to be fixed by measurements used. This type of wind tunnel and wind turbine rotor' performance difference and the difference of revolution figures have been determined to be fixed by measurements used.

CFD에 의한 500kW급 수평축 풍력발전용 터빈의 성능평가 및 유동해석에 관한 연구 (A Study of Performance Estimate and Flow Analysis of the 500 kW Horizontal-Axis Wind Turbine by CFD)

  • 김유택;김범석;김정환;남청도;이영호
    • 한국유체기계학회 논문집
    • /
    • 제5권4호
    • /
    • pp.32-39
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine the complex 3-D stall phenomena on the rotor blade and wake distribution of the wind turbine. The flow characteristics of 500kW Horizontal Axis Wind Turbine (HAWT) are compared with the calculated 3-D stall phenomena and wake distribution. We used the CFX-TASCflow to predict flow and power characteristics of the wind turbine. The CFD results are somewhat consistent with the BEM (Blade Element Momentum) results. And, the rotational speed becomes faster, the 3-D stall region becomes smaller. Moreover, the pressure distribution on the pressure side that directly gets the incoming wind grows high as it goes toward the tip of the blade. The pressure distribution on the blade's suction side tells us that the pressure becomes low in the leading edge of the airfoil as it moves from the hub to the tip. However, we are not able to precisely predict on the power coefficient of the rotor blade at the position of generating complex 3-D stall region.

3차원 초음속 터빈의 노즐-로터 상호작용에 관한 수치적 연구 (A Numerical Analysis on the Nozzle-Rotor of a 3-D Supersonic Turbine)

  • 윤원근;신봉근;김귀순;김진한;정은환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.413-422
    • /
    • 2005
  • 본 연구에서는, 먼저 $Fine^{TM}/Turbo$의 신뢰성을 확보하기 위해 초음속 터빈의 실험 결과와 비교 해석하였다. 그 결과 $Fine^{TM}/Turbo$는 초음속 유동 현상을 비교적 정확하게 해석함을 알 수 있었다. 다음으로 Grid Independency Test를 통하여 3차원 터빈의 적합한 격자계를 선정하여. 3차원 초음속 터빈의 노즐-로터 상호작용에 관해 유동해석을 실시하였다. 터빈의 노즐-로터간의 축방향 간격은 점점 커질수록 높은 추력을 나타냈으며, 로터 블레이드의 Chamfering Angle 또한 Blade-Edge가 날카로워 질수록 추력이 증가하였다.

  • PDF

Effects of Combustor-Level High Free-Stream Turbulence on Blade-Surface Heat/Mass Transfer in the Three-Dimensional Flow Region near the Endwall of a High-Turning Turbine Rotor Cascade

  • Lee Sang Woo;Kwon Hyun Goo;Park Byung-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1347-1357
    • /
    • 2005
  • Effects of combustor-level high free-stream turbulence on the blade-surface heat/mass transfer have been investigated in the three-dimensional flow region near the endwall within a high-turning turbine rotor cascade passage. Free-stream turbulence intensity and integral length scale in the high turbulence case are 14.7 percents and 80 mm, respectively. The result shows that there is no considerable discrepancy in the blade heat/mass transfer near the endwall between the low and high turbulence cases. As departing from the endwall, however, the deviation between the two cases becomes larger, particularly in the region where flow separation and re-attachment occur. Under the high turbulence, flow disturbances such as boundary-layer separation and re-attachment seem to be suppressed, which makes the blade heat/mass transfer more uniform. Moreover, there are some evidences that endwall vortices tend to be weakened under the high turbulence.

Numerical simulation and investigation of jet impingement cooling heat transfer for the rotor blade

  • Peiravi, Amin;Bozorg, Mohsen Agha Seyyed Mirza;Mostofizadeh, Alireza
    • Advances in aircraft and spacecraft science
    • /
    • 제7권6호
    • /
    • pp.537-551
    • /
    • 2020
  • Investigation of leading edge impingement cooling for first stage rotor blades in an aero-engine turbine, its effect on rotor temperature and trailing edge wake loss have been undertaken in this study. The rotor is modeled with the nozzle for attaining a more accurate simulation. The rotor blade is hollowed in order for the coolant to move inside. Also, plenum with the 15 jet nozzles are placed in it. The plenum is fed by compressed fresh air at the rotor hub. Engine operational and real condition is exerted as boundary condition. Rotor is inspected in two states: in existence of cooling technique and non-cooling state. Three-dimensional compressible and steady solutions of RANS equations with SST K-ω turbulent model has been performed for this numerical simulation. The results show that leading edge is one of the most critical regions because of stagnation formation in those areas. Another high temperature region is rotor blade tip for existence of tip leakage in this area and jet impingement cooling can effectively cover these regions. The rotation impact of the jet velocity from hub to tip caused a tendency in coolant streamlines to move toward the rotor blade tip. In addition, by discharging used coolant air from the trailing edge and ejecting it to the turbines main flow by means of the slot in trailing edge, which could reduce the trailing edge wake loss and a total decrease in the blade cooling loss penalty.

회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석 (Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects)

  • 김동만;김동현;박강균;김유성
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

풍력발전기용 복합재 블레이드의 강도향상을 위한 수치해석 (A Numerical Analysis for the Strength Improvement of Composite Wind Turbine Blade)

  • 권오헌;강지웅;정우열
    • 한국안전학회지
    • /
    • 제25권4호
    • /
    • pp.7-12
    • /
    • 2010
  • The average growth in the wind power energy market during the past five years has been 26% per year. Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind power system and the rotor blade concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. In addition, it is necessary to analyze and evaluate the stress distribution and deformation for them in the design level. This study shows the result that CFRP rotor blade of wind turbine satisfies the strength and deformation through numerical analysis using the commercial finite element analysis program.

4-축 나프탈렌 승화깊이 측정시스템을 이용한 터빈 블레이드 표면에서의 열(물질)전달계수 측정 (Measurement of Heat (Mass) Transfer Coefficient on the Blade Surfaces of a Linear Turbine Rotor Cascade With a Four-Axis Naphthalene Profile Measuring System)

  • 권현구;이상우;박병규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.42-47
    • /
    • 2001
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is successfully developed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiment is carried out at the free-stream Reynolds number and turbulence intensity of $2.09\times10^5$ and 1.2%. The results on the blade surfaces show that the local heat (mass) transfer on the suction surface is strongly influenced by the endwall vortices, but that on the pressure surface shows a nearly two-dimensional nature. The pressure surface has a more uniform distribution of heat load than the suction one.

  • PDF

큰 회전각을 가지는 터빈 블레이드 표면에서 나프탈렌승화법을 이용한 열(물질)전달계수 측정 (Measurements of Heat (Mass) Transfer Coefficient on the Surface of a Turbine Blade with n High Turning Angle Using Naphthalene Sublimation Technique)

  • 권현구;이상우;박병규
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1077-1087
    • /
    • 2002
  • The heat (mass) transfer characteristics on the blade surface of a high-turning first-stage turbine rotor for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is developed successfully for the measurements of local sublimation depth on the curved surface In the leading edge region, there is a good agreement between the present heat (mass) transfer data and the previous result on a turbine blade with a moderate turning angle, but some discrepancies are found in the mid-chord heat (mass) transfer between the two results. The local heat (mass) transfer on the present suction surface is greatly enhanced due to an earlier boundary transition, compared with that on a turbine blade with a moderate turning angle, meanwhile there is only a slight change in the pressure-side heat (mass) transfer between the two different turbine rotors. In general, the heat (mass) transfer augmentation by the endwall vortices is found much higher on the suction surface than on the pressure surface.