• Title/Summary/Keyword: Turbine Rotor Blade

Search Result 342, Processing Time 0.026 seconds

EFFECTS OF COMPUTATIONAL GRIDS ON NUMERICAL SIMULATION OF TRANSONIC TURBINE CASCADE FLOWFIELDS (천음속 터빈 익렬유동의 수치해석에서의 계산격자점 영향)

  • Chung H.T.;Jung H.N.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Numerical investigations have been performed to examine the effects of the computational grids on the prediction of the flow characteristics inside the turbine cascades. Three kinds of grid system based on H-type grid are applied to the high-turning transonic turbine rotor blades and comparisons with the experimental data and the numerical results of each grid structure have been done. In addition, the grid sensitivity on the estimation of the blade performances has been investigated.

Effects of Computational Grids on Numerical Simulation of Transonic Turbine Cascade Flowfields (천음속 터빈 익렬유동의 수치해석에서의 계산격자점 영향)

  • Chung, H.T.;Jung, H.N.;Seo, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.857-862
    • /
    • 2003
  • Numerical investigations have been performed to examine the effects of the computational grids on the prediction of the flow characteristics inside the turbine cascades. Three kinds of grid system based on H-type grid are applied to the high-turning transonic turbine rotor blades and comparisons with the experimental data and the numerical results of each grid structure have been done. In addition, the grid sensitivity on the estimation of the blade performances has been investigated.

  • PDF

Aeroelastic Phenomena of a Wind Turbine Rotor Blade (풍력발전기 로터 블레이드의 공력탄성학적 현상)

  • Bae, jae-Sung;Hwang, Jai-Hyuk;Ju, Young-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • Aeroelastic phenomena of a wind turbine include stall-induced vibrations and classical flutters. The classical flutter occurs due to coalescence between bending mode and torsion mode. It is typically the aeroelastic instability of an aircraft wing. Different from the classical flutter, the stall-induced vibration is the instability in lead-lag mode due to negative aerodynamic dampings. In the present study, the three degree of freedom aeroelastic model of a wind turbine blade is introduced to characterize and analyze its aeroelastic phenomena. The numerical results show that the aeroelastic stability of flap-lag motion is more unstable than that of flap-pitch motion and the aeroelastic characteristics of lead-lag motion can become unstable as wind speed increases.

A Study of One-Stage 3-Dimensional Axial Turbine Performance Test (단단 3차원 축류형 터빈 성능시험에 관한연구)

  • 김동식;조수용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.59-62
    • /
    • 2001
  • An axial-type turbine design technology is developed. In order to design one-stage turbine, preliminary design method is applied, and then design parameters are chosen after analyzing the gas properties within the turbine passage using the streamline curvature method. Stator blade is designed using C4 Profile, and rotor blade is designed using shape parameters. The output power is measured with various RPM and input power. The experimental result shows that the output power is proportionally decreased with the negative incidence angle.

  • PDF

Rotor-Blade Shape Design and Power-Performance Analysis for Horizontal-Axis Tidal Turbine Using CFD (수평축 조류발전용 로터 블레이드 형상설계 및 CFD에 의한 출력성능해석)

  • Jung, Ji Hyun;Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.661-668
    • /
    • 2015
  • We present a design methodology for horizontal-axis tidal turbine blades based on blade element momentum theory, which has been used for aerodynamic design and power-performance analysis in the wind-energy industry. We design a 2-blade-type 1 MW HATT blade, which consists of a single airfoil (S814), and we present the detailed design parameters in this paper. Tidal turbine blades can experience cavitation problems at the blade-tip region, and this should be seriously considered during the early design stage. We perform computational fluid dynamics (CFD) simulations considering the cavitation model to predict the power performance and to investigate the flow characteristics of the blade. The maximum power coefficient is shown to be about 47 under the condition where TSR = 7, and we observed cavitation on the suction and pressure sides of the blade.

터보펌프용 1.4MW급 터빈의 전산유동해석

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.153-162
    • /
    • 2005
  • Through a preliminary design process, four design candidates for a 1.4MW class partial admission turbine have been chosen and the numerical analyses using a frozen rotor method are applied to estimate their performance. Each flow analysis result was compared with others and the optimum design was selected. Flow characteristics in the passages and some types of losses induced by shocks and wakes were found from calculation results. A new rotor blade was redesigned based on these calculations and this result is compared with previous one through flow analysis.

  • PDF

A Aerodynamic Design of Mixed Flow Turbine of the Marine Turbocharger (박용 터보챠저 사류 터빈의 공력설계)

  • Kim, Hong-Won;Oh, Kook-Taek;Ghal, Sang-Hak;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.670-675
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for turbine of the marine middle engine turbocharger. The performance characteristics of turbocharger turbine are investigated at various operating conditions using mass flow rate and computational flow analysis for rotor and nozzle at design point are performed. Preliminary design results are performed by applying mean line and radial equilibrium theory. Performance prediction and flow analysis results show good agreement with experiments. From 3 dimensional flow analysis result, efficiency is 0.6% greater than design point. Therefore, this design approach is useful for preliminary design, and helps to increase the design capability for optimized rotor blade.

  • PDF

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

Numerical Analysis of the Turbine Rotor Flow with the Unsteady Passing Wake from a Stator (정익에서 발생한 비정상 후류를 지나는 터빈 동익 유동장 수치해석)

  • Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.275-280
    • /
    • 2007
  • A turbine stage consists of stators and rotors. The stator provides the required inlet flow conditions so that the rotor can produce the necessary power. Passing wakes generated from the trailing edge of the stator make an interaction with the rotor. In the present study, this flow mechanism is investigated using the numerical analysis. In case of a large gap distance between the stator and rotor, the flow can be solved independently. First, only the stator flow field is solved. Second, the rotor flow field is solved including the passing wake characteristics obtained from the stator analysis. The passing wake experiences the shearing as it approaches to the rotor blade leading edge. And it is chopped when it strikes the rotor blade. After that, the chopped wakes becomes the prolongation as it travels downstream. The flow according to the variation of the gap distance is also studied. Pressure jumps due to the passing wakes result in the pressure and lift loss and it gets stronger with the closer gap distance.

Two-Dimensional Analysis of Unsteady Flow Through One Stage of Axial Turbine (II) (1단 축류 터빈의 비정상 내부유동특성에 관한 2차원 해석 (II))

  • Park, Jun-Young;Um, In-Sik;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1518-1526
    • /
    • 2001
  • In this paper, the mechanism of unsteady potential interaction and wake interaction in one stage axial turbine is numerically investigated at design point in two-dimensional viewpoint. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting (FVS) and Cubic spline interpolation is applied on zonal interface between stator and rotor. The inviscid analysis is used to embody the influence of potential interaction only and viscous analysis is used to embody the influences of both potential interaction and wake interaction at the same time. The potential-flow disturbance from the stator into a rotor passage and the periodic blockage effect of rotor produce the unsteady pressure on the blade surface in inviscid analysis. After the wake is cut by rotor, two counterrotating votical patterns flanking the wake centerline in the passage are generated. So, these phenomena magnify the unsteady pressure in viscous analysis than that in inviscid analysis. The resulting unsteady forces on the rotor, generated by the combined interaction of the two effects by potential and wake interaction, are discussed.