• 제목/요약/키워드: Turbine Rotor

검색결과 881건 처리시간 0.031초

터빈 발전기 회전자 권선의 층간단락 분석 (Analysis of Shorted Turns in Turbine Generator Rotor Windings)

  • 김희동;김병래;최형주
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1555-1559
    • /
    • 2011
  • Turbine generator(13.8 kV, 137.5 MW) has high bearing vibration at rotation speed. Shorted turns in generator rotor windings have strong correlation with increased field current which is thus related to increase in bearing vibration. The recurrent surge oscillograph (RSO) test is performed on the rotor winding in turbine generator to detect shorted turns. The result of the RSO test indicates that shorted turns of rotor winding are generated in two locations. The RSO test was capable of identifying the presence, number, and location of shorted turns in generator rotor windings.

축류형 터빈에서 정${\cdot}$동익 축방향 거리의 변화에 대한 실험적 연구 (An Experimental Study of 3-D Axial Type Turbine Performance with Various Axial Gaps between the Rotor and Stator)

  • 김종호;김은종;조수용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.541-544
    • /
    • 2002
  • The turbine performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3/min\;at\;290mmAq$ static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to two times of stator axial chord length, and performance curves are obtained with 7 different axial gaps. The efficiency is dropped about $5{\%}$ of its highest value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.0-1.5Cx.

  • PDF

최적 주속비 구간에서 로터속도 비선형 파라미터를 이용한 풍력터빈의 토크제어 (Torque Control of Wind Turbine Using Nonlinear Parameter of Rotor Speed in the Region of Optimal Tip Speed Ratio)

  • 임채욱;김상균
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.30-35
    • /
    • 2012
  • Aerodynamic torque of wind turbine has nonlinear properties. Nonlinearity of aerodynamic torque is very important in wind turbine in the aspect of control. The traditional torque control method using optimal mode gain has been applied in many wind turbines but its response is slower as wind turbine size is larger. In this paper, a torque control method using a nonlinear parameter of rotor speed among nonlinear properties of aerodynamic torque. Simulink model is implemented to obtain the nonlinear parameter of rotor speed and numerical simulations for a 2MW wind turbine are carried out and simulation results for the traditional and proposed torque control methods are compared.

수직/수평축 통합형 풍력발전 시스템 (Dual Rotor Wind Turbine System)

  • 신찬;김지언;송승호;노도환;김동용;정성남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.289-292
    • /
    • 2001
  • A Dual rotor turbines HAWT/VAWT combined wind turbine system that can drastically enhance the power production capability compared to conventional Single Rotor Turbine HAWT system. The combined system that takes advantage of strong point of both horizontal and vertical Axis wind turbine system developed by a venture firm : KOWINTEC of Chonbuk National University. The HAWT/VAWT hybrid system has been successfully field tested and commercial operation since Feb. 12, 2001 in Hae-chang rest park, Bu-an county near the Sae Man-Kum Sea Dike. This paper will briefly describe the field test results performance and a special aerodynamic structure with bevel-planetary gear box of Dual Rotor Wind Turbine system.

  • PDF

수직축 소형 풍력터빈 성능 향상을 위한 로터 형상 개선에 대한 연구 (A Study on the Improvement of the Rotor Shape for Improving Performance of Small Wind Turbine with Vertical Axis)

  • 김찬종;김재운;백인수;김철진
    • 산업기술연구
    • /
    • 제37권1호
    • /
    • pp.37-40
    • /
    • 2017
  • This study was carried out to improve the performance of a vertical-axis micro wind turbine. It is unique in that it has two identical generators on both sides of the main shaft. Also it has a C shape frame to fix the generators and the main shaft firmly and to provide a connection to a tower. Performance analysis of the wind turbine rotor was performed using Qblade, which is an analysis program for vertical axis wind turbines and freeware. Based on the analysis results, the blade airfoil, the chord length, and the rotor size were modified to improve the performance of the rotor. The modification was found to increase the performance of the wind turbine and to reach the targeted rated power.

터보펌프 터빈의 열구조적 적합성 검증을 위한 터빈로터-파이로시동기 연계시험 (Turbine Rotor-Pyrostarter Coupled Test for the Verification of Thermo-Structural Suitability of a Turbopump Turbine)

  • 정은환;강상훈;홍문근;이항기;이수용;김진한
    • 한국추진공학회지
    • /
    • 제18권1호
    • /
    • pp.65-72
    • /
    • 2014
  • 터보펌프 터빈로터의 열구조적 적합성 검증을 위한 터빈로터-파이로시동기 연계시험을 수행하였다. 새로운 추진제를 적용한 파이로시동기와 열응력 경감 설계 및 터빈 동익 표면 건전성 향상을 위한 후 가공 공정이 적용된 터빈로터시편이 시험에 사용되었다. 시험은 75톤급 엔진시동을 위한 파이로 시동기의 연소가스를 터보펌프 터빈로터와 동일한 형상의 시편에 분사하는 방식으로 이루어졌다. 터빈에 가해지는 열 부하는 운용 설계점에서 극한 조건까지 세 종류로 구분하여 시험을 진행하였으며 모든 시험에서 터빈로터의 손상은 발견되지 않았다.

터보펌프 터빈의 성능 및 노즐-로터 간극의 영향에 대한 실험적 고찰 (Experimental Investigation of Turbopump Turbine : Turbine Performance and Effect of Nozzle-Rotor Clearance)

  • 정은환;강상훈;신동윤;박편구;김진한
    • 한국추진공학회지
    • /
    • 제10권2호
    • /
    • pp.78-86
    • /
    • 2006
  • 30톤급 개방형 액체로켓엔진용 터보펌프 터빈에 대한 시험을 수행하였다. 작동유체는 고압공기를 이용하였다. 다양한 압력비 및 회전수에 대하여 터빈 성능을 측정하였으며 아울러 노즐-로터간 간극이 터빈 성능에 미치는 영향에 대하여 실험적으로 관찰하였다. 터빈압력비 13.5, 설계속도비 0.25에서 터빈의 효율은 51.1%로 나타났다. 노즐-로터간 간극은 터빈성능에 큰 영향을 주는 것으로 측정되었는데 상사시험조건에서 설계 간극 기준 약 1mm의 축간극 감소는 약 3.5% 터빈효율증가를 가져오는 것으로 나타났다.

1단 축류 가스터빈내 동익의 허브면에 장착된 경계층 펜스의 효과에 대한 수치 해석적 연구 (Numerical Analysis on Effects of the Boundary Layer Fence Equipped on the Hub of Rotor in the First Stage Axial Flow Gas Turbine)

  • 윤덕규;김재춘;김대현;이원석;정진택
    • 한국유체기계학회 논문집
    • /
    • 제12권2호
    • /
    • pp.8-16
    • /
    • 2009
  • The objective of this study is to investigate the three-dimensional turbulence flow characteristics of a rotor passage of an one-stage axial flow gas turbine and to investigate the effects of a boundary layer fence installed on the hub endwall of the rotor passage. Secondary flows occurring within the rotor passage (e.g. horseshoe vortex, passage vortex, and cross flow) cause secondary loss and reduce turbine efficiency. To control these secondary flows, a boundary layer fence measuring half the height of the thickness of the inlet boundary layer was installed on the hub endwall of the rotor passage. This study was performed numerically. The results show that the wake and secondary flows generated by the stator reduced the rotor load to constrain the development of cross flow and secondary flow reinforced by the rotor passage. In addition, the secondary vortices occurring within the rotor passage were reduced by the rotation of the rotor. Although, the boundary layer fence induced additional vortices, giving rise to an additional loss of turbine, its presence was shown to reduce the total pressure loss when compared to effects of the case without fence regardless of the relative position of blades by enervating secondary vortices occurred within the rotor passage.

사보니우스 소형풍력터빈 수치해석용 격자시스템 평가 (Evaluation of a Grid System for Numerical Analysis of a Small Savonius Wind Turbine)

  • 김철규;이상문;전석윤;윤준용;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.547-553
    • /
    • 2016
  • This paper presents the effect of a grid system on the performance of a small Savonius wind turbine installed side-by-side. Turbine performance is compared using three different grid systems; tetrahedral grid having a concentrated circular grid around turbine rotors, the tetrahedral grid having a concentrated rectangular grid around turbine rotors and the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid. The commercial code, SC/Tetra has been used to solve the three-dimensional unsteady Reynolds-averaged Navier-Stokes analysis in the present study. The Savonius turbine rotor has a rotational diameter of 0.226m and an aspect ratio of 1.0. The distance between neighboring rotor tips keeps the same length of the rotor diameter. The variations of pressure and power coefficient are compared with respect to blade rotational angles and rotating frequencies of the turbine blade. Throughout the comparisons of three grid systems, it is noted that the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid has a stable performance compared to the other ones.

블레이드 표면거칠기에 따른 터빈 성능저하 (Turbine Performance Degradation Due to Blade Surface Roughness)

  • 박일영;윤용일;송성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.92-98
    • /
    • 2003
  • Turbine blades experience significant surface degradation with service. This paper presents experimental evidence of blade surface roughness reducing turbine efficiency. Performance tests were conducted in a low speed, single-stage axial flow turbine rig with roughened blade surfaces. Sheets of sandpaper with equivalent sandgrain roughnesses of 106 and $400{\mu}m$ were used to roughen the blades. In these tests, effects of roughened stator vanes and rotor blades were separately evaluated. In the fully rough regime ($k_{s}=400{\mu}m$), the experimental results show an 11 percent decrease in normalized efficiency with roughness only on stator vanes ; an 8 percent decrease with roughness only on rotor blades ; and a 19 percent decrease with roughness on both the stator and rotor blades. In the transitionally rough regime ($k_{s}=106{\mu}m$), the trends are similar approximately 4 percent decrease with either roughened stator or roughened rotor and an 8 percent decrease with roughness on both stator and rotor blades. Thus, roughened stator vanes incur more performance penalty than roughened rotor blades.

  • PDF