• Title/Summary/Keyword: Turbine Rotational Power

Search Result 105, Processing Time 0.03 seconds

Design and Performance Test of Savonius Tidal Current Turbine with CWC (사보니우스형 조류발전 터빈의 설계 및 회류수조 실험을 통한 성능평가)

  • Jo, Chul-Hee;Lee, Jun-Ho;Rho, Yu-Ho;Ko, Kwang-Oh;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.37-41
    • /
    • 2012
  • Due to global warming, the need to secure alternative resources has become more important nationally. Because of the very strong current on the west coast, with a tidal range of up to 10 m, there are many suitable sites for the application of TCP (tidal current power) in Korea. In the southwest region, a strong current is created in the narrow channels between the numerous islands. A rotor is an essential component that can convert tidal current energy into rotational energy to generate electricity. The design optimization of a rotor is very important to maximize the power production. The performance of a rotor can be determined using various parameters, including the number of blades, shape, sectional size, diameter, etc. There are many offshore jetties and piers with high current velocities. Thus, a VAT (vertical axis turbine) system, which can generate power regardless of flow direction changes, could be effectively applied to cylindrical structures. A VAT system could give an advantage to a caisson-type breakwater because it allows water to circulate well. This paper introduces a multi-layer vertical axis tidal current power system. A Savonius turbine was designed, and a performance analysis was carried out using CFD. A physical model was also demonstrated in CWC, and the results are compared with CFD.

Effect of Blade Angles on a Micro Axial-Type Turbine Operated in a Low Partial Admission Rate (부분분사 마이크로 축류형터빈에서의 익형각 효과에 관한 연구)

  • Cho, Soo-Yong;Cho, Bong-Soo;Cho, Chong-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2007
  • A tested micro axial-type turbine consists of two stages and its mean radius of rotor flow passage is 8.4 mm. This turbine could be applied to a driver of micro power system, and its rotational speed in the unloaded state reaches to 100,000 RPM. The performance of this system is sensitive depending on the blade angles of the rotor and stator because it is operated in a low partial admission rate, so a performance test is conducted through measuring the specific output power and the net specific output torque with various blade angles on the nozzle, stator and rotor. The experimental results show that the net specific output torque is varied by 15% by changing the rotor blade angle, and the optimal incidence angle is about $10.3^{\circ}$.

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel

  • Siddiqui, M. Salman;Rasheed, Adil;Kvamsdal, Trond
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.405-416
    • /
    • 2019
  • Aerodynamic characteristic of a small scale wind turbine under the influence of an incoming uniform wind field is studied using k-ω Shear Stress Transport turbulence model. Firstly, the lift and drag characteristics of the blade section consisting of S826 airfoil is studied using 2D simulations at a Reynolds number of 1×105. After that, the full turbine including the rotational effects of the blade is simulated using Multiple Reference Frames (MRF) and Sliding Mesh Interface (SMI) numerical techniques. The differences between the two techniques are quantified. It is then followed by a detailed comparison of the turbine's power/thrust output and the associated wake development at three tip speeds ratios (λ = 3, 6, 10). The phenomenon of blockage effect and spatial features of the flow are explained and linked to the turbines power output. Validation of wake profiles patterns at multiple locations downstream is also performed at each λ. The present work aims to evaluate the potential of the numerical methods in reproducing wind tunnel experimental results such that the method can be applied to full-scale turbines operating under realistic conditions in which observation data is scarce or lacking.

Electric power frequency and nuclear safety - Subsynchronous resonance case study

  • Volkanovski, Andrija;Prosek, Andrej
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1017-1023
    • /
    • 2019
  • The increase of the alternate current frequency results in increased rotational speed of the electrical motors and connected pumps. The consequence for the reactor coolant pumps is increased flow in primary coolant system. Increase of the current frequency can be initiated by the subsynchronous resonance phenomenon (SSR). This paper analyses the implications of the SSR and consequential increase of the frequency on the nuclear power plant safety. The Simulink $MATLAB^{(R)}$ model of the steam turbine and governor system and RELAP5 computer code of the pressurized water reactor are used in the analysis. The SSR results in fast increase of reactor coolant pumps speed and flow in the primary coolant system. The turbine trip value is reached in short time following SSR. The increase of flow of reactor coolant pumps results in increase of heat removal from reactor core. This results in positive reactivity insertion with reactor power increase of 0.5% before reactor trip is initiated by the turbine trip. The main parameters of the plant did not exceed the values of reactor trip set points. The pressure drop over reactor core is small discarding the possibility of core barrel lift.

Preliminary Study of Hybrid Micro Gas Turbine Engine (하이브리드 타입 초소형 가스터빈엔진 개발 및 초도 시운전)

  • Seo, Junhyuk;Choi, Juchan;Kwon, Kilsung;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • In this study, a 2W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and experimental investigations of its potential under actual combustion conditions were performed. A micro-gas turbine (MGT) contains a turbo-charger, combustor, and generator. Compressor and turbine blades, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control (CNC) machined static air bearing, and a permanent magnet was attached to the end of the shaft for generation. A heat transfer analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor's high temperature, which was verified in an actual experiment. The generator performance test showed that it can generate 2W at design rotational speed. Prototype micro-gas turbine generated maximum 1 mW electric power and lasted up to 15 minutes.

Preliminary Design Procedure of Electric Starting System for Small GasTurbine Engine (소형 가스터빈엔진 전기시동 시스템 기본설계 절차)

  • Lim, Byeung-Jun;Rhee, Dong-Ho;Jun, Yong-Min;Ahn, Iee-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.829-832
    • /
    • 2010
  • For gas turbine engine starting, external power should be supplied with engine to accelerate to suitable rotational speed for air and fuel ignition conditions. Electric starting system for small gas turbine engine has simple system and light weight, so it is generally used for small aircraft. For system analysis of gas turbine engine electric starting system, Characteristics of battery, start motor, engine drag torque should be analyzed and theirs temperature effects should be considered. In this paper, preliminary design procedure of small gas turbine engine electric starting system and major design parameters were described.

  • PDF

Design of a Torque Application Device in Test Rig for a Wind Turbine Gearbox (풍력발전기용 증속기 시험 장비의 토크 인가 장치 설계)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Nam, Yong-Yun;Oh, Joo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.507-515
    • /
    • 2015
  • This study was conducted to develop and verify a torque application device for use in a mechanical power-circulation test rig for 5.5 MW wind turbine gearboxes. The design and analysis of the torque application device was conducted. In addition, the torsional stiffness of the test rig was calculated using the rotational angle measurements for each of the components. The calculated stiffness of the test rig was $231.13kN{\cdot}m/rad$ for a clockwise torque application. The rated torque can be applied when the stiffness of the gearbox is greater than $1,064,400kN{\cdot}m/rad$ for a clockwise torque application. Because of the limited rotational angle of the test rig, the potential application of the rated torque is determined according to the torsional stiffness of the test gearbox.

Performance Analysis of a Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid System (고체산화물 연료전지/마이크로 가스터빈 하이브리드 시스템의 성능 해석)

  • Yang, Jin-Sik;Song, Tae-Won;Kim, Jae-Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.273-276
    • /
    • 2005
  • Performance analysis of a solid oxide fuel cell/micro gas turbine hybrid system is conducted at design-point and part-load conditions and its results are discussed in this study. With detailed considerations of the heat and mass transfer phenomena along various flow streams of the SOFC, the analysis based on a quasi-2D model reasonably predicts its performance at the design-point operating conditions. In case of part-load operations, performance of the hybrid system to three different operation modes(fuel only control, speed control, and VIGV control) is compared. It is found that the simultaneous control of both supplied fuel and air to the system with a variable MGT rotational speed mode is the optimum choice for the high performance operation. And then, the dynamic characteristics of a solid oxide fuel cell are briefly introduced.

  • PDF

Dynamic Response Measurements and Analysis on a 10 kW Class Vertical Axis Wind Turbine (10 kW급 수직축 풍력터빈에 대한 구조물 동적응답 계측 및 분석)

  • Yi, Jin-Hak;Kim, Wonsul;Han, Taek Hee;Yim, Sungyul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.107-113
    • /
    • 2017
  • The dynamic characteristics including natural frequencies and excitation frequencies are evaluated for a small 10 kW vertical axis wind turbine. Acceleration responses were measured at 12 distributed locations for impact vibration tests, ambient vibration tests during non-operational and operational conditions, and braking tests during operational condition. The natural frequencies for the lowest 2 bending modes and the first torsional mode were estimated and also the excitation frequencies, i.e. 1P, 2P, 4P, were also estimated according to the rotational speed using the responses under operational conditions (i.e. power generation condition).

Design of Linear Pitch Controller in Wind Turbine under the condition of Varying Operating Points (동작점 변화 조건에서의 풍력터빈 선형 피치제어기 설계)

  • Cheon, Jongmin;Kim, Choonkyoung;Lee, Joohoon;Hong, Jitae;Kwon, Soonman
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • This paper presents a pitch controller which can hold output power constant at the rated value. Although wind turbine contains complicated nonlinearities, its behaviour within a certain operating range of a point can be approximated by that of a linear model. By doing so, we can apply rather simple and systematic linear control techniques such as PID and LQR(Linear Quadratic Regulator) to design a linear pitch controller. Because these linear controllers are valid only in a sufficiently small range around an operating point, linearized wind turbine model under the condition of varying wind speed needs a linear pitch controller can achieve the aims of tracking the rated rotor rotational speed. We propose an improved linear pitch controller taking each merit of LQR and PI controller under the condition of varying operating points in this paper.

  • PDF