• Title/Summary/Keyword: Turbine Geometry

Search Result 178, Processing Time 0.028 seconds

Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study

  • Rajoo, Srithar;Martinez-Botas, Ricardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.155-168
    • /
    • 2008
  • This paper investigates a variable geometry (VG) mixed flow turbine with a novel, purposely designed pivoting nozzle vane ring. The nozzle vane ring was matched to the 3-dimensional aspect of the mixed flow rotor leading edge with lean stacking. It was found that for a nozzle vane ring in a volute, the vane surface pressure is highly affected by the flow in the volute rather than the adjacent vane surface interactions, especially at closer nozzle positions. The performance of the VG mixed flow turbine has been evaluated experimentally in steady and unsteady flow conditions. The VG mixed flow turbine shows higher peak efficiency and swallowing capacity at various vane angle settings compared to an equivalent nozzleless turbine. Comparison with an equivalent straight vane arrangement shows a higher swallowing capacity but similar efficiencies. The VG turbine unsteady performance was found to deviate substantially from the quasi-steady assumption compared to a nozzleless turbine. This is more evident in the higher vane angle settings (smaller nozzle passage), where there are high possibility of choking during a pulse cycle. The presented steady and unsteady results are expected to be beneficial in the design of variable geometry turbochargers, especially the ones with a mixed flow turbine.

Development of The New High Specific Speed Fixed Blade Turbine Runner

  • Skotak, Ales;Mikulasek, Josef;Obrovsky, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.392-399
    • /
    • 2009
  • The paper concerns the description of the step by step development process of the new fixed blade runner called "Mixer" suitable for the uprating of the Francis turbines units installed at the older low head hydropower plants. In the paper the details of hydraulic and mechanical design are presented. Since the rotational speed of the new runner is significantly higher then the rotational speed of the original Francis one, the direct coupling of the turbine to the generator can be applied. The maximum efficiency at prescribed operational point was reached by the geometry optimization of two most important components. In the first step the optimization of the draft tube geometry was carried out. The condition for the draft tube geometry optimization was to design the new geometry of the draft tube within the original bad draft tube shape without any extensive civil works. The runner blade geometry optimization was carried out on the runner coupled with the draft tube domain. The blade geometry of the runner was optimized using automatic direct search optimization procedure. The method used for the objective function minimum search is a kind of the Nelder-Mead simplex method. The objective function concerns efficiency, required net head and cavitation features. After successful hydraulic design the modal and stress analysis was carried out on the prototype scale runner. The static pressure distribution from flow simulation was used as a load condition. The modal analysis in air and in water was carried out and the results were compared. The final runner was manufactured in model scale and it is going to be tested in hydraulic laboratory. Since the turbine with the fixed blade runner does not allow double regulation like in case of full Kaplan turbine, it can be profitably used mainly at power plants with smaller changes of operational conditions or in case with more units installed. The advantages are simple manufacturing, installation and therefore lower expenses and short delivery time for turbine uprating.

A Study on the Inverse Shape Design of a Turbine Cascade Using the Permeable Boundary Condition and CFD (침투경계조건과 CFD를 이용한 터빈 역형상 설계에 관한 연구)

  • Lee, Eun-Seok;Seol, Woo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3116-3121
    • /
    • 2007
  • In this paper, the inverse shape design is introduced using the permeable wall boundary condition. Inverse shape design defines the blade shape for the prescribed Mach numbers or pressure distribution on its surface. It calculates the normal mass flux from the difference between the calculated and prescribed pressure at the surface. A new geometry can be achieved after applying the quasi one-dimensional continuity equation from the leading edge to the trailing edge. For validation of this method, two test cases are studied. The first test case of inverse shape design illustrates the cosine bump with a strong shock. After seven geometry modifications, the shock-free bump geometry can be obtained. The second example concerns the redesign of a transonic turbine cascade. The initial isentropic Mach distribution has a peak on the upper surface. The target isentropic Mach number distribution was imposed smoothly. The peak of Mach distribution has disappeared at the final geometry. This proposed inverse design method has proven to be an efficient and robust tool in turbomachinery design fields.

  • PDF

The Effect of Rotor Tip Geometry on the Performance of Turbopump Turbine (터보펌프 터빈의 로터 팁 형상에 따른 성능변화 연구)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.197-204
    • /
    • 2007
  • Effect of rotor tip geometry on the performance of supersonic impulse turbine was investigated experimentally. Using the shrouded supersonic impulse turbine of the 30ton class liquid rocket engine turbopump as a base model, the measured performance of de-shrouded rotor was compared. The effect of nozzle-rotor overlap also has been investigated. It has been found that the magnitude of turbine efficiency is largely affected by the existence of the rotor shroud. However, measured efficiency sensitivity of the de-shrouded supersonic impulse turbine with respect to turbine tip clearance was relatively smaller than that of high performance reaction turbine. It also has been found that there exists nozzle-rotor overlap value which results optimum efficiency in supersonic impulse turbine.

  • PDF

A Study on the Effect of Turbine Nozzle with Fillet on Performance Characteristics of a Gas Turbine Engine (터빈 노즐의 Fillet 설치에 따른 가스터빈 엔진의 성능 특성에 관한 연구)

  • Kim, Jae-Min;Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.542-545
    • /
    • 2009
  • In this study, the effect of turbine geometry on the overall performance of a gas turbine was investigated by computational fluid dynamics. Overall engine performance was predicted through a full engine simulation program which can predict the interactions of the compressor, the combustor and the turbine. The compressor and the turbine analysis code solves 2D and 3D Navier-Stokes equations respectively. The chemical equilibrium code was applied to simulate the combustor. The computations were performed for two different shapes of turbine nozzle. The nozzle shapes adopted a baseline blade and a blade with fillet.

  • PDF

Towards a digital twin realization of the blade system design study wind turbine blade

  • Baldassarre, Alessandro;Ceruti, Alessandro;Valyou, Daniel N.;Marzocca, Pier
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.271-284
    • /
    • 2019
  • This paper describes the application of a novel virtual prototyping methodology to wind turbine blade design. Numeric modelling data and experimental data about turbine blade geometry and structural/dynamical behaviour are combined to obtain an affordable digital twin model useful in reducing the undesirable uncertainties during the entire turbine lifecycle. Moreover, this model can be used to track and predict blade structural changes, due for example to structural damage, and to assess its remaining life. A new interactive and recursive process is proposed. It includes CAD geometry generation and finite element analyses, combined with experimental data gathered from the structural testing of a new generation wind turbine blade. The goal of the research is to show how the unique features of a complex wind turbine blade are considered in the virtual model updating process, fully exploiting the computational capabilities available to the designer in modern engineering. A composite Sandia National Laboratories Blade System Design Study (BSDS) turbine blade is used to exemplify the proposed process. Static, modal and fatigue experimental testing are conducted at Clarkson University Blade Test Facility. A digital model was created and updated to conform to all the information available from experimental testing. When an updated virtual digital model is available the performance of the blade during operation can be assessed with higher confidence.

The Effect of Rotor Geometry on the Performance of a Wells Turbine for Wave Energy Conversion (Part I : The Effect of Sweep Ratio on Turbine Performance) (파력발전용 웰즈터빈의 동익형상이 성능에 미치는 영향 (제1보 : 스위프비의 영향))

  • Kim, Tai-Whan;Park, Sung-Soo;Setoguchi, T.;Takao, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.99-105
    • /
    • 2003
  • This paper presents the effect of rotor geometry on the performance of a small-scale Wells turbine for wave energy conversion. In this study, four kinds the Wells turbine of blade profile were selected from previous studies. The types of blade profile included in the papers are as follows: NACA0020 ; NACA0015; CA9; and HSIM 15-262123-1576. The experimental investigations have been performed for two solidities by testing model under steady flow conditions. The effect of blade profile on the running and starting characteristics under sinusoidal flow conditions have also been investigated by a numerical simulation based on a quasi-steady analysis. In addition, the effect of sweep on the turbine characteristics has been studied for the cases of CA9 and HSIM 15-262123-1576. Based on the evaluation, a suitable choice of these design factors has been suggested. As a result, it seems that a suitable choice of the sweep ratio of 0.35 for the blade profile of the Wells turbine.

CFD evaluation of a suitable site for a wind turbine on a trapezoid shaped hill

  • Unchai, Thitipong;Janyalertadun, Adun
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.75-88
    • /
    • 2014
  • The computational fluid dynamic is used to explore new aspects of the hill flow. This analysis focuses on flow dependency and the comparison of results from measurements and simulations to show an optimization turbulent model and the possibility of replacing measurements with simulations. The first half of the paper investigates a suitable turbulence model for determining a suitable site for a wind turbine. Results of the standard k-${\varepsilon}$ model are compared precisely with the measurements taken in front of the hilltop, The Reynolds Stress Model showed exact results after 1.0 times of hill steepness but the standard k-${\varepsilon}$ model and standard k-${\omega}$ model showed greater underestimation. In addition, velocity flow over Pha Taem hill topography and the reference geometry shape were compared to find a suitable site for a turbine in case the actual hill structure was associated with the trapezoid geometric shape. Further study of geometry shaped hills and suitable sites for wind turbines will be reported elsewhere.

Aeroelastic investigation of a composite wind turbine blade

  • Rafiee, Roham;Fakoor, Mahdi
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.671-680
    • /
    • 2013
  • Static aeroelastic is investigated in a wind turbine blade. Imposed to different loadings, the very long and flexible structures of blades experience some changes in its preliminary geometry. This results in variations of aerodynamic loadings. An iterative approach is developed to study the interactions between structure and aerodynamics evaluating variations in induced stresses in presence of aeroelasticity phenomenon for a specific wind turbine blade. A 3D finite element model of the blade is constructed. Aerodynamic loading is applied to the model and deflected shape is extracted. Then, aerodynamic loadings are updated in accordance with the new geometry of the deflected blade. This process is repeated till the convergence is met. Different operational conditions consisting of stand-by, start-up, power production and normal shut-down events are investigated. It is revealed that stress components vary significantly in the event of power production at the rated wind speed; while it is less pronounced for the events of normal shut-down and stand-by.

Turbine Blading Performance Evaluation Using Geometry Scanning and Flowfield Prediction Tools

  • Zachos, Pavlos K.;Pappa, Maria;Kalfas, Anestis I.;Mansour, Gabriel;Tsiafis, Ioannis;Pilidis, Pericles;Ohyama, Hiroharu;Watanabe, Eiichiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.89-96
    • /
    • 2008
  • This paper investigates the effect of blade deformation, caused by manufacturing inaccuracies, on the performance of a 2-stage axial steam turbine. A high fidelity 3D coordinate Measurement Machine has been employed to obtain the exact geometrical model of the blades. A Streamline Curvature solver was used to predict the overall performance of the turbine. During the manufacturing process of the casts and of the blades themselves, several types of errors can occur which lead to a different geometry from that envisaged by the designer. The main objective of this study is to investigate the effect of those errors on the performance of a 2-stage experimental axial steam turbine. A high fidelity measurement of the actual geometry of both stator and rotor blades has been carried out, using a 3D Coordinate Measurement Machine. The cross sections of the blades obtained by the measurement were compared with those produced by the design process to evaluate the change in blade inlet/exit angles. In addition, the geometrical deviations from the initial design have been subjected to a statistical study in order to locate the nature of the error. The actual(measured) model has been used as input into a Streamline Curvature solver to evaluate its performance. Finally, a comparison with the performance plots of the original geometry has been carried out. A measurable change of efficiency as well as in the total power delivered by the turbine was found. This suggests that the accumulated error caused during the manufacturing procedure plays a significant role in the overall performance of the machine by making it less efficient by more than 1%. Reverse engineering techniques are proposed to predict and alleviate these errors leading thereby to a final design of each stage with improved performance.

  • PDF