• 제목/요약/키워드: Turbine Effect

검색결과 897건 처리시간 0.022초

PMSG 풍력 터빈의 특성을 고려한 발전 시스템 시뮬레이션 (PMSG Wind Turbine Simulation under the consideration of real characteristics)

  • 심준보;김명호;박기현;한경섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.182.2-182.2
    • /
    • 2010
  • A various algorism has been studied to extract possibly every energy from a wind turbine in conjunction with the increase of concern about wind power system. In order to verify these control algorism, it is essential to make the most similar conditions to the real wind turbine's environment. Therefore, using separately excited DC motor a wind turbine the most similar to the real turbine is simulated. Tower shadow effect and Wind shear effect are considered as well as inertia emulation. For the control of Back-to-Back Converter Vector current control methods and space vector pulse width modulation are used and for reducing THD of grid current LCL filter is considered. This simulation results verified the energy produced by wind all flows into the utility under the consideration of the characteristics of a wind turbine. The result of this paper is expected to be used as a basic material for analyzing the characteristics of the wind turbine generator.

  • PDF

소수력발전용 횡류수차의 러너 블레이드 깃수에 따른 성능해석 (Performance Analysis of a Cross Flow Hydro Turbine by Runner Blade Number)

  • 최영도;김창복;임재익;김유택;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.698-706
    • /
    • 2008
  • Performance improvement of Small hydro turbine is a very important subject to solve in the stage of introduction and development of the turbine. Cross-flow hydro turbine should be also studied more in detail for the turbine performance in order to extend the sites of application. In order to improve the turbine performance, the effect of the turbine shape on the turbine performance should be examined. Therefore, the effect of runner blade number on the turbine performance is investigated by use of a commercial CFD code. The results show that runner blade number gives remarkable effect on the efficiency and output power of the turbine. Pressure on the surface of the runner blade changes considerably by the blade number at Stage 1, but relatively small change of velocity distribution occurs in the flow passage.

다리우스 조류 터빈의 상호작용 효과에 대한 실험적 연구 (Experimental Study on Interaction Effect of Darrieus Tidal Stream Turbines)

  • 김지훈;박진순;고진환
    • Ocean and Polar Research
    • /
    • 제41권3호
    • /
    • pp.193-202
    • /
    • 2019
  • There have been various approaches for efficiency improvement of a Darrieus tidal stream turbine after it was introduced as an alternative of horizontal axis turbines. Among the approaches, the researches on the interaction effect of dual configuration were conducted. In this study, a dual Darrieus turbine with a coupling mechanism was proposed for investigating the interaction effect. Also, the effect of bi-directional tidal stream was analyzed with prototype fabrication, apparatus set-up and experiment conduction in indoor and offshore facilities. As the results of the experiments, the dual turbine in case of counter-rotation and inflow between the turbines improved efficiencies by 9.5% and 11.31%, respectively, as compared to the single turbine. Also, the dual turbine in case of the inflow improved efficiencies by 9.4% and 16.62%, respectively, as compared to that in case of outflow between the turbines which represented the case of 180 degrees change of flow direction after slack water. Therefore, the proposed dual turbine showed the advantage in terms of the efficiency as compared to the single turbine and the effect level of the slack water on the performance of the dual turbine was investigated.

Air Layer Effect on the Performance Improvement of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Shin, Byeong-Rog;Lee, Young-Ho
    • 한국유체기계학회 논문집
    • /
    • 제13권4호
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

Effect of Blade Angle on the Performance of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.413-420
    • /
    • 2008
  • In order to improve the performance of cross-flow hydro turbine, detailed examination of the effect of the turbine configuration on the performance is needed necessarily. Therefore, this study is aimed to investigate the effect of blade angle on the performance of the cross-flow hydro turbine. Analysis of the turbine performance with the variation of the blade angle has been made by using a commercial CFD code. The results show that inlet and outlet angles of runner blade give considerable effect on the performance of the turbine. Pressure on the surface of the runner blade changes remarkably by the blade angle both at the Stages 1 and 2. Moreover, relatively small blade inlet angle is effective to produce higher value of output power. Recirculating flow in the runner passage causes remarkable hydraulic loss.

전산유체역학을 이용한 풍력터빈 축소효과 수치해석 (Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics)

  • 박영민;장병희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.269-272
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using computational fluid dynamics. For the numerical analysis of wind turbine. Three dimensional Navier-Stokes solver with various turbulence models was tested and realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with experiment and blind test data. Using the present method, numerical simulations for various size of wind tunnel model were carried out and characteristics were observed in detail. The power loss due to the interference between wind turbine and nacelle was also computed for relatively larger nacelle installation in wind tunnel test. The present results showed good correlations with experimental data and reasonable trends of scale effect of wind turbine.

  • PDF

음향시뮬레이션을 이용한 수차 발전기소음의 저감효과 분석 (Analysis on Reduction Effect of Hydraulic Turbine Dynamo Noise using Acoustic Simulation)

  • 정은정;주덕훈;김재수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.248-252
    • /
    • 2007
  • As Waterpower Generation generates electricity using the difference of altitude of water, also let the turbine revolves through water pipe, at this time the revolving turbine causes exceedingly huge noise. Accordingly, not only those workers in the hydraulic turbine dynamo room are suffering the difficulties in mutual communication, but also those workers in the adjacent office are enduring the obstruction to the business due to the noise. Therefore, this Study has analyzed the reduction effect on the noise of hydraulic turbine dynamo room utilizing computer simulation, through the preceding research with the optimized model for architectural acoustic factor of the hydraulic turbine dynamo room. It is considered that such research result could be applied as the useful material for improvement of acoustic performance and noise-reduction effect at other similar hydraulic turbine dynamo room in the future.

  • PDF

Aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structure in yaw condition

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.1021-1040
    • /
    • 2015
  • An effective method to calculate aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structures in yaw condition is proposed. By a case study on a 5 MW large wind turbine, the finite element model of the wind turbine tower-blade coupled structure is established to obtain the modal information. The harmonic superposition method and modified blade-element momentum theory are used to calculate aerodynamic loads in yaw condition, in which the wind shear, tower shadow, tower-blade modal and aerodynamic interactions, and rotational effects are fully taken into account. The mode superposition method is used to calculate kinetic equation of wind turbine tower-blade coupled structure in time domain. The induced velocity and dynamic loads are updated through iterative loop, and the aeroelastic responses of large wind turbine tower-blade coupled system are then obtained. For completeness, the yaw effect and aeroelastic effect on aerodynamic loads and wind-induced responses are discussed in detail based on the calculating results.

경계 조건이 가스터빈 블레이드 냉각공기 유량에 미치는 영향 (Effect of Boundary Conditions on Internal Coolant Flow in Gas Turbine Blades)

  • 신지영;박병규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.559-564
    • /
    • 2001
  • Advanced gas turbine engines employ turbine entry temperatures so high that cooling of the turbine blades is essential. The coolant flow introduces losses which need to be minimized, and therefore it is important that the minimum amount of coolant is used. This work presents the result of the one-dimensional analysis and the effect of the boundary conditions on coolant flow rate in gas turbine blades.

  • PDF

경계조건에 따른 가스터빈 블레이드 냉각공기 유량변화 (Effect of Boundary Condition on the Flow Rate of the Internal Coolant in Gas Turbine Blades)

  • 신지영;박병규
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.888-894
    • /
    • 2001
  • Advanced gas turbine engines employ turbine entry temperatures so high that cooling of the turbine blades is essential. The coolant flow introduces losses which need to be minimized, and therefore it is important that the minimum amount of coolant should be used. This work presents the result of the one-dimensional analysis and the effect of the boundary conditions on coolant flow rate in gas turbine blades.

  • PDF