• Title/Summary/Keyword: Turbidity reduction system

Search Result 28, Processing Time 0.025 seconds

Study on the Management of Doam Dam Operation by the Analysis of Suspended Solids Behavior in the lake (호내 부유물질 거동 분석을 통한 도암댐 운영 방안에 관한 연구)

  • Yeom, Bo-Min;Lee, Hye Won;Moon, Hee-Il;Yun, Dong-Gu;Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.470-480
    • /
    • 2019
  • The Doam lake watershed was designated as a non-point pollution management area in 2007 to improve water quality based on watershed management implementation. There have been studies of non-point source reduction with respect to the watershed management impacting the pollutant transport of the reservoir. However, a little attention has been focused on the impact of water quality improvement by the management of the dam operation or the guidelines on the dam operation. In this study, the impact of in-lake management practices combined with watershed management is analyzed, and the appropriate guidelines on the operation of the dam are suggested. The integrated modeling system by coupling with the watershed model (HSPF) and reservoir water quality model (CE-QUAL-W2) was applied for analyzing the impact of water quality management practices. A scenario implemented with sedimentation basin and suspended matter barrier showed decrease in SS concentration up to 4.6%. The SS concentration increased in the scenarios adjusting withdrawal location from EL.673 m to the upper direction(EL.683 m and EL.688 m). The water quality was comparably high when the scenario implemented all in-lake practices with water intake at EL.673 m. However, there was improvement in water quality when the height of the water intake was moved to EL.688 m during the summer by preventing sediments inflow after the rainfall. Therefore, to manage water quality of the Doam lake, it is essential to control the water quality by modulating the height of water intake through consistent turbidity monitoring during rainfall.

Intelligent Controller for Optimal Coagulant Dosage Rate in Water Treatment Process (정수장 약품 최적 주입률 결정을 위한 지능형 제어기 개발)

  • Lee, Ho-Hyun;Shin, Gang-Wook;Hong, Sung-Taek;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.369-376
    • /
    • 2015
  • Chemicals are injected in order to remove a variety of organic substances contained in the water purification plant influent. It can be determined with measuring sedimentation turbidity 4~7 hours later, whether the chemical dosage rate is proper or not, which make the real-time feedback control impossible. In addition, manual operation in accordance with the Jar-Test carried out in the laboratory and the operator's experience may cause the experimental and human error by the changes of organic characteristics and water quality. Especially at night ad weekend, the rate have been determined only by the operator judgment owing to environment engineer's absence. Therefore, the decision of optimal chemical dosage rate using proposed intelligent control algorithm is expected to result in real-time injection and cost reduction.

Effects of flushing techniques on water quality at extremity with low chlorine residuals in drinking water distribution systems (수질 취약지역 및 관말에서 플러싱 적용 먹는물 수질 개선 효과)

  • Ko, Kyung-Hoon;Kweon, Ji-Hyang;Kim, In-Ja;Lim, Woo-Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.313-324
    • /
    • 2011
  • Several complaints from consumers on red or turbid waters were often filed at the same places although various efforts were made to improve water quality in the drinking water plant. The red water problems were occurred due to corrosion of main water pipe, especially at extremity. The low concentrations of chlorine indicating poor water quality were detected at the problematic location. To solve the poor water quality at the extremity, flushing techniques, i.e., conventional flushing, unidirectional flushing, and continuous flushing, were recently practiced. In this study, effects of conventional flushing on water qualities were examined by comparing turbidity and residual chlorine before and after flushing. In addition, more detailed analyses on water qualities at the tap water were conducted to learn a reduction pattern during flushing. Five items from geographic information system of water distribution were used to obtain a relationship with water quality, washing duration or amounts of washing water. The flushing was effective to meet the National Drinking Water Quality Standard with simple and relatively short time operation. The key operational parameter in flushing was amounts of washing water which should be estimated based on water quality of the consumer's tap water. The positive relationship between the residual chlorine and pipe length implied that detention time in the pipeline was the main cause of the complaints. More experiments on effectiveness of flushing are needed to determine reasonable strategies of flushing.

Effect of Coagulation in Coagulation/Ultrafiltration Hybrid System in Water Treatment Process (정수처리용 응집.한외여과 혼성공정에서 응집 효과에 관한 연구)

  • Moon, Seong-Yong;Lee, Sang-Hyub;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.837-843
    • /
    • 2005
  • Coagulation influence was evaluated as the pretreatment for ultrafiltration. Coagulation was expected to improve water quality, reduce membrane fouling and increase backwash effect. Continuous operation of UF was employed in order to investigate the influence of coagulation. Alum, PACS and Ferric chloride were used as coagulants separately. From the result of the research, coagulation can improve the treated water quality greatly. Organic removal was increased more than turbidity and showed an improvement of 30.6% at most. All three coagulants presented conspicuous reduction of membrane fouling, among which PACS was the most effective with long term run. Backwash effect differed with different coagulants while Ferric chloride turned out to be the most effective one. The optimum dosage of coagulant resulted in the highest backwash efficiency.

Assessment of Cylinder-Shaped Filter System for Improving Reservoir Water Quality (호소의 수질개선을 위한 원통형 여과장치의 평가)

  • Lee, Sun-Ho;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.975-983
    • /
    • 2008
  • In view of previous investigations that the outermost zone of porous media displays the most vigorous removal of organic contaminant, a novel filtration apparatus of cylinder-shaped porous material (polyester fiber) was applied to the Samcheonji reservoir in Gyeongsan to assess its ability to remove contaminants from reservoir water. The apparent mechanism of purification is that organic pollutant dispersed in the water is collected by the matrix to be degraded by microbes in due course. Data obtained from the experiment appear promising; 19$\sim$27% decrease in COD$_{Cr}$, 37$\sim$43% reduction in COD$_{Mn}$, BOD$_5$ diminution between 67$\sim$81%, 93% decrease in turbidity, and 99% removal of Suspended Solids. The results suggest that this device may be a valuable supplementary means to ameliorate the quality of reservoir water.

Complexation of Amphotericin B With Egg Phosphatidylcholine Liposomes

  • Kim, Jin-Chul;Lee, Eun-Ok;Yang, Ji-Won;Choe, Tae-Boo;Kim, Jong-Duk
    • Archives of Pharmacal Research
    • /
    • v.18 no.2
    • /
    • pp.84-89
    • /
    • 1995
  • The complexation and physical characteristics of egg phosphatidylcholine (PC) liposome containing amphotericin B(AmB) were investigated through circular dichrosim(CD) spectra, the size distribution, the turbidity change, and the calcein release. CD spectra of AmB-containing egg PC mxture exhibited a positive peak around 330 nm indicative of complexation of AmB and four negative peaks. The positive peak increased up to $2.2{\;}millidegree/{\mu}g$ AmB as AmB contents increased up to 12% (w/w), suggesting that AmB-phospholipid complexation was promoted by the antibiotics. The effective diameter of liposomesa by dynamic light scattering decreased from 450 nm to 220 nm as the amount of AmB in liposomes increased from o to 30% (w/w). The complexation may be responsible for the reduction in size. On the other hand, at around 1 mN deoxycholate (DOC), the reltive turbidities of 5 and 10% (w/w) AmB-containing liposome suspension were less than 1 probably due to the soblubilization of the complex, while those of pure PC liposome suspension were larger than 1 at the same concentration. Deoxycholate-induced release of liposomes, indicating the intercalation of the drug into the bilayers. Therefore, it is concluded that in AmB/eggPC/water system, AmB-phospholipid complexcoexists with AmB-containing liposomes.

  • PDF

Effectiveness Analysis on the Application of Ultraviolet and Plasma Treatment Devices for Water Sterilization (용수 살균을 위한 자외선과 플라즈마 처리장치 적용에 따른 효과분석)

  • Kim, Young Jae;Park, Jeon Oh;Lee, Haeng Lim
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.86-90
    • /
    • 2019
  • This study aimed to compare the disinfection efficiencies of the ultraviolet and plasma systems, the two systems designed and commercialized to disinfect water in aquaculture, by putting each in a 100 ℓ water tank and concentrating 1.0 ℓ of treated water to check the changes in the number of bacteria in the samples. Each system was operated for 6 hours to culture the typical seawater bacteria in the Marine agar, Thiosulfate citrate bile salts sucrose agar and Salmonella Shigella agar media, respectively, to check the number of bacteria in the media, and the changes in the number of Edwardsiella piscicida in the treated water were checked after the artificial inoculation of E. piscicida in the disinfected seawater. As a result, the two disinfection systems showed the almost similar levels of bacterial reduction efficiency between 99.5% and 99.9%. However, the result of this study showed that, with 100 ℓ of water treated for the same length of time using the two systems, the plasma system turned out to disinfect bacteria in a shorter period of time than the UV system. However, as the changes in the number of bacteria were checked for a short length of time (6 hours) in this study, it was judged that, considering the actual aquaculture environment in which the quality of water significantly changes with feed residues, excretions and coastal contamination, etc., and a lot of biofilms and organic matter exist, the plasma system would be more efficient than the UV system as the former is capable of continuously maintaining a certain level of efficiency than the latter that is limited in terms of efficiency depending on the level of turbidity and the existence of organic matter.

Groundwater Quality in Gyeongnam Region Using Groundwater Quality Monitoring Data: Characteristics According to Depth and Geological Features by Background Water Quality Exclusive Monitoring Network (지하수수질측정망 자료를 활용한 경남지역 지하수 수질: 배경수질전용측정망에 의한 심도·지질별 특성)

  • Cha, Suyeon;Seo, Yang Gon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.39-54
    • /
    • 2020
  • This study analyzed the groundwater quality according to the depth and geological features in Gyeongsangnam-do area using groundwater quality monitoring network data to grasp the groundwater quality characteristics and to provide basic data for policy making on efficient groundwater management. Five hundred and three data sets were acquired from background water quality exclusive monitoring network in soil groundwater information system for five years (2013 ~ 2017). Except for the total coliforms and tracer items such as mercury, phenol, and others, the parameters of water quality were significant or very significant, depending on depth and geological features. As the depth got deeper, the average value of pH and electrical conductivity increased; water temperature, dissolved oxygen, oxide reduction potential, arsenic, total coliforms, and turbidity decreased; and total unfit rate for drinking water standards was lower. It was found that the sum of the positive and negative ions was the highest in the clastic sedimentary rock and the lowest in metamorphic rock. The total unfit rate for drinking water standards was the highest for metamorphic rocks, followed by clastic sedimentary rock and unconsolidated sediments and, finally, intrusive igneous rock with the lowest penetration. The Na-Cl water type, which indicated the possibility of contamination by external pollutants, appeared only at some points in shallow depths and in clastic sedimentary rocks.