• Title/Summary/Keyword: Turbidity control

Search Result 284, Processing Time 0.028 seconds

Control of Turbid Water Transport with Filamentous Mat (섬모상 매트에 의한 탁수이동차단에 관한 실험적 연구)

  • Yu, Jianghua;Yi, Qitao;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.44-51
    • /
    • 2010
  • A lab-scale apparatus for turbid water transport control was tested and examined. The channel had a dimension of $100cm{\times}30cm{\times}15cm$ (length${\times}$hight${\times}$width). And the turbidity water was prepared using two types of particles, bentonite and loess. The channel equipped with filamentous mat was operated under various shock load conditions. In the control channel, instantly, turbid water mixed with the clean water inside the channel and turbidity prevails the entire channel. While in the mat-equipped channel, it increases only at the bottom. Overall, the filamentous mat gave capture efficiency of 70~90% compared with the control group. The capture efficiency of turbid particles decreased with increased input turbidity flux. The result of experimental run on how turbid particles are separated in the mat channel shows that settling, filtration and attachment are the main processes. Meanwhile, turbidity was diffused from the channel bottom due to turbidity gradient before and after mat zone. The particle size before mat zone was lightly coarser than that after mat zone.

Control of Turbid Water Transport with Filamentous Mat in Lake (섬모상 매트에 의한 저수지와 댐에서 탁수확산차단 기술의 개발)

  • Yi, Qitao;Yu, Jianghua;Park, Sung-Soon;Kim, Young-Chul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.888-890
    • /
    • 2009
  • This study presented a lab-scale apparatus for turbidity control in the lakes or reservoirs. Overall, the filamentous mat had a capture efficiency of 70~90% compared with the control group. Generally, the capture efficiency decreased with improved input turbidity flux. However, the attachment and sedimentation were thought to be the main processes for turbidity water retention and removal. Thus, the increase of hydraulic detention time in the mat zone is very important to improve the capture efficiency of the turbidity water.

  • PDF

Treatment of Rice-Washing Wastewater by ph Adjustment (ph 조절에 의한 쌀세척 폐수의 처리)

  • 노홍균;김지숙;이문이;조영인
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.4
    • /
    • pp.660-665
    • /
    • 1994
  • Treatment of rice-washing wastewater was considered under various pH levels and chitosan concentrations. Compared with the control test, addition of chitosan at the various concentrations did not noticeably enhanced turbidity reduction at pH 4 and 5 , but greatly enhanced at above pH 6. However, reduction of turbidity in the wastewater, irrespective of chitosan concentrations, was the greatest at pH 4 and became lower by increasing pH. Suspended solids in the wastewater were the most effectively recovered by pH adjustment of the wastewater to 4 followed by centrifugation, with over 99% reduction in turbidity . Different concentrations of suspended solids in the wastewater and various kinds of acids used for p/H adjustment did not affect turbidity reduction. Increasing storage periods of the wastewater resulted in lower reductions in turbidity.

  • PDF

Fuzzy modeling and control for coagulant dosing process in water purification system (상수처리시스템 응집제 주입공정 퍼지 모델링과 제어)

  • 이수범;남의석;이봉국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.282-285
    • /
    • 1996
  • In the water purification plant, the raw water is promptly purified by injecting chemicals. The amount of chemicals is directly related to water quality such as turbidity, temperature, pH and alkalinity. At present, however, the process of chemical reaction to the turbidity has not been clarified as yet. Since the process of coagulant dosage has no feedback signal, the amount of chemical can not be calculated from water quality data which were sensed from the plant. Accordingly, it has to be judged and determined by Jar-Test data which were made by skilled operators. In this paper, it is concerned to model and control the coagulant dosing process using jar-test results in order to predict optimum dosage of coagulant, PAC(Polymerized Aluminium Chloride). The considering relations to the reaction of coagulation and flocculation, the five independent variables(turbidity, temperature, pH, Alkalinity of the raw water, PAC feed rate) are selected out and they are put into calculation to develope a neural network model and a fuzzy model for coagulant dosing process in water purification system. These model are utilized to predict optimum coagulant dosage which can minimize the water turbidity in flocculator. The efficacy of the proposed control schemes was examined by the field test.

  • PDF

On-off Control for Continuous Culture of Microalgae in Flat Panel Photobioreactor (평판형 광생물반응기의 미세조류 연속배양을 위한 On-off 제어)

  • Kim, Jae-Hyeok;Yoon, Chung-Man;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.237-243
    • /
    • 2016
  • Recently, technologies that produce biofuels from microalgae are being studied worldwide. It is necessary to significantly reduce the production costs of biofuels from microalgae for economic reasons. In this study, the growth curve of the microalgae was obtained using the batch-culture method, and the specific growth rate was predicted using the regression method. Based on the culture conditions of the estimated specific growth rate, the turbidity of the microalgae in the flat panel photobioreactor (PBR) was measured. Furthermore, an on-off control scheme was applied to the flat panel PBR in order to culture the microalgae continuously on the basis of turbidity. The parameters of the on-off control system were displayed by LabView. The on-off scheme of peristaltic pump was controlled based on the turbidity in the PBR. In addition, the turbidity values of growth curves were compared and analyzed in the continuous culture process using the on-off controller.

Optimization of coagulant dosing process in water purification system using neural network (신경회로망을 이용한 상수처리시스템의 응집제 주입공정 최적화)

  • Nam, Ui-Seok;Park, Jong-Jin;Jang, Seok-Ho;Cha, Sang-Yeop;U, Gwang-Bang;Lee, Bong-Guk;Han, Tae-Hwan;Go, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.644-651
    • /
    • 1997
  • In the water purification plant, chemicals are injected for quick purification of raw water. It is clear that the amount of chemicals intrinsically depends on water quality such as turbidity, temperature, pH and alkalinity. However, the process of chemical reaction to improve water quality (e.g., turbidity) by chemicals is not yet fully clarified nor quantified. The feedback signal in the process of coagulant dosage, which should be measured (through the sensor of the plant) to compute the appropriate amount of chemicals, is also not available. Most traditional methods focus on judging the conditions of purifying reaction and determine the amounts of chemicals through manual operation of field experts using Jar-test data. In this paper, a systematic control strategy is proposed to derive the optimum dosage of coagulant, PAC(Polymerized Aluminium Chloride), using Jar-test results. A neural network model is developed for coagulant dosing and purifying process by means of six input variables (turbidity, temperature, pH, alkalinity of raw water, PAC feed rate, turbidity in flocculation) and one output variable, while considering the relationships to the reaction of coagulation and flocculation. The model is utilized to derive the optimum coagulant dosage (in the sense of minimizing turbidity of water in flocculator). The ability of the proposed control scheme validated through the field test has proved to be of considerable practical value.

  • PDF

A STUDY OF SIMULATION AND CONTROL OF PAC COSING PROCESS IN WATER PURIFICATION SYSTEM

  • Nahm, Euisuck;Lee, Subum;Woo, Kwangbang;Han, Taehan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.75-78
    • /
    • 1995
  • In this paper it is concerned to develop control method using jar-test results in order to predict the optimum dosage of coaglant, PAC(PoliAluminum Chloride). Considering the relations with the reactions with the reaction of coagulation and flocculation, the five independent variables ( e, g, turbidity of raw water, water turbidity in flocculators, temperature, pH, and alkalynity) are selected out of parameters and they are put into calculation to develop a neural network model for PAC dosing process in water purification system. This model is utilized to predict optimum dosage of PAC. That is, the optimum dosage of PAC is searched in neural network model for PAC dosing process to minimize the water turbidity in flocculators. This searching is implemented by means of expert heuristics. The efficacy of the proposed contorl schemem and feasibility of acquired neural network model for PAC dosing contorl in water purification system is evaluated by means of computer simulation.

  • PDF

Effect of Selective Withdrawal on the Control of Turbidity Flow and Its Water Quality Impact in Deacheong Reservoir (선택취수에 따른 대청호 탁수 조절효과 및 수질영향 분석)

  • Jung, Yong-Rak;Liu, Huan;Kim, Yu-Kyung;Ye, Lyeong;Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.601-615
    • /
    • 2007
  • A selective withdrawal method has been widely used to control the quality of water released from a stratified reservoir and to improve downstream ecosystem habitats. Recently, several existing reservoir withdrawal facilities have been modified to accommodate multi-level water intake capabilities in order to adapt the impact of long-term discharge of high turbidity flow. The purpose of this study was to assess the effect of selective withdrawal method on the control of downstream turbidity and its impact on water quality in Daecheong Reservoir. A laterally integrated two-dimensional hydrodynamic and eutrophication model, which was calibrated and validated in the previous studies, was applied to simulate the temporal variations of outflow turbidity with various hypothetical selective withdrawal scenarios. In addition, their impacts on the algal growth as well as water quality constituents were analyzed in three different spatial domains of the reservoir The results showed that the costly selective withdrawal method would provide very limited benefits for downstream turbidity control during two years of consecutive simulations for 2004-2005. In particular, an excessive withdrawal from the epilimnion zone for supplying upper layer clean water resulted in movement of turbidity plume that contained high phosphorus concentrations upward photic zone, and in turn increased algal growth in the lacustrine zone.

Prediction of Alkaline Copper Quat (ACQ) Wood Preservative Concentration by Turbidity (탁도에 의한 구리·알킬암모늄화합물계 목재방부제(ACQ)의 농도 예측)

  • Lee, Jong Shin;Kim, Kyoung Tae;Choi, Gwang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.743-749
    • /
    • 2016
  • The concentration control of wood preservatives is necessary to produce a preservative treated wood having a uniform quality. Concentration measurement method of wood preservatives to be easily used in the field has not been developed yet. This study examined the way to estimate the concentration from turbidity of ACQ wood preservative that can be relatively easily measured by using a portable turbidity meter. The addition of phosphoric acid solution in an alkaline ACQ solution having a very low turbidity is created a suspension of the white substance and the turbidity suddenly increased. The optimum amount of addition of the phosphoric acid solution is until the pH of ACQ solution reaches 7, the turbidity of the ACQ solution reaches maximum value. Excessive addition of the phosphoric acid solution results in a turbidity decrease with acidification of the ACQ solution. Also ACQ solution becomes transparent. The high significance was recognized with positive correlation between the concentration and the turbidity of the ACQ solution. From the t-test, The significant difference between the actually measured concentrations and the concentrations predicted by the regression equation for industrial ACQ solutions was not recognized. Thus, it was possible to know that concentration prediction and control of industrial ACQ solution using the turbidity and a regression equation. Therefore, using the regression equation and turbidity is expected to be able to management the concentration of ACQ solution in the industrial field.

Determination of Optimum Coagulants (Ferric Chloride and Alum) for Arsenic and Turbidity Removal by Coagulation

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Jung, Yoo-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.931-940
    • /
    • 2010
  • The Raw water from Deer Creek (DC) reservoir and Little Cottonwood Creek (LCC) reservoir in the Utah, USA were collected for jar test experiments. This study examined the removal of arsenic and turbidity by means of coagulation and flocculation processes using of aluminum sulfate and ferric chloride as coagulants for 13 jar tests. The jar tests were performed to determine the optimal pH range, alum concentration, ferric chloride concentration and polymer concentration for arsenic and turbidity removal. The results showed that a comparison was made between alum and ferric chloride as coagulant. Removal efficiency of arsenic and turbidity for alum (16 mg/L) of up to 79.6% and 90.3% at pH 6.5 respectively were observed. Removal efficiency of arsenic and turbidity for ferric chloride (8 mg/L) of up to 59.5% at pH 8 and 90.6% at pH 8 respectively were observed. Optimum arsenic and turbidity removal for alum dosages were achieved with a 25 mg/L and 16 mg/L respectively. Optimum arsenic and turbidity removal for ferric chloride dosages were achieved with a 20 mg/Land 8 mg/L respectively. In terms of minimizing the arsenic and turbidity levels, the optimum pH ranges were 6.5 and 8for alum and ferric chloride respectively. When a dosage of 2 mg/L of potassium permanganate and 8 mg/L of ferric chloride were employed, potassium permanganate can improve arsenic removal, but not turbidity removal.