• Title/Summary/Keyword: Tunnelling in clay

Search Result 29, Processing Time 0.024 seconds

Visualization analysis of the progressive failure mechanism of tunnel face in transparent clay

  • Lei, Huayang;Zhai, Saibei;Liu, Yingnan;Jia, Rui
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.193-205
    • /
    • 2022
  • The face stability of shield tunnelling is the most important control index for safety risk management. Based on the reliability of the transparent clay (TC) model test, a series of TC model tests under different buried depth were conducted to investigate the progressive failure mechanism of tunnel face. The support pressure was divided into the rapid descent stage, the slow descent stage and the basically stable stage with company of the local failure and integral failure in the internal of the soil during the failure process. The relationship between the support pressure and the soil movement characteristics of each failure stage was defined. The failure occurred from the soil in front of the tunnel face and propagated as the slip zone and the loose zone. The fitted formulas were proposed for the calculation of the failure process. The failure mode in clay was specified as the basin shape with an inverted trapezoid shape for shallow buried and appeared as the basin shape with a teardrop-like shape in deep case. The implications of these findings could help in the safety risk management of the underground construction.

A study on the risk and settlement evaluation of a shield TBM excavated in soft marine sedimentary soils (해저 연약 퇴적층 지반 쉴드 TBM 위험요인 평가 및 장비 침하에 관한 연구)

  • You, Kwang-Ho;Park, Chi-Myeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.4
    • /
    • pp.355-364
    • /
    • 2016
  • Recently, a 3,250 meter-long tunnel was constructed beneath the sea bed formed of composite sedimentary soils to transport reusable waste heat gas of industrial complex in the west coast of Korea. Some risks such as machine settlement always exist due to the uncertainties of geological and construction factors during the subsea shield TBM tunnelling. In this construction site, the deviation of tunnel alignment caused by shield TBM settlement was occurred during excavation. It was examined that the lack of bearing capacity of soft clay was a main cause. This paper evaluates the risk of shield TBM tunnelling considering the ground conditions. Correlation between machine settlement and its advance rate was evaluated through the analytical equation in which bearing capacity is considered and a 3-D numerical analysis which can simulate the TBM advance condition (in other words, the dynamic condition). It was found out that a shield TBM could settle due to the insufficient bearing capacity of soft clay layers. In order to prevent such the problem, the best advance rate proper to the ground characteristics is needed to be applied. In the ground conditions of the section of interest, it was turned out that if the shield TBM advance rate was maintained between 35 mm/min and 40 mm/min, the machine settlement could be avoided.

A study on surface settlement characteristics according to the cohesive soil depth through laboratory model tests (실내모형시험을 통한 점성토 지반의 토피고에 따른 지표침하 특성연구)

  • Kim, Young-Joon;Im, Che-Geun;Kang, Se-Gu;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.507-520
    • /
    • 2014
  • In this study, the surface displacement was investigated according to the various depth of cover when the tunnel excavation equipment was used in a clay soil. For this the laboratory scaled model test was carried out using the soil sample similar to the in-situ conditions. We carried out four tests according to tunnel depth(1.5D, 2.0D, 2.5D, 3.0D). The distribution of impact due to tunnelling was quantitatively analyzed in the three-dimension by measuring the surface displacement. In addition, the pattern of surface displacements was figured out.

Model Tests on Deformation Behavior of Soft Ground Under Embankment (성토하부 연약지반의 변형거동에 관한 모형실험)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Hong, Won-Pyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • When embankments are constructed on soft clay deposit, unsymmetrical surcharges due to embankments may generate the excessive vertical settlement and lateral deformation of soft clay foundation. The excessive deformations in soft grounds cause not only stability problem of the embankment itself but also that of the adjacent structures. The objectives of this research are to study the deformational behavior of soft ground due to the embankment load with different loading and soil conditions. Five model tests are carried out with different test conditions. From the results of the model tests, it is concluded that the lateral displacement induced by the embankment load occurs in the range of two times of the embankment width from a toe. In addition, the relationship between loading rate, v, and the vertical settlement of the soft ground, ${\Delta}s$, and the lateral displacement at the toe of embankment, ${\Delta}y_m$, is investigated based on the model test results.

Investigation of Subsurface Deformations for the Shallow Tunnel In A Granular Mass Using Two-Dimensional Laboratory Model Test and Numerical Analysis (2차원 실내모형실험과 수치해석을 이용한 사질토 지반의 얕은 터널에 대한 지중변형에 대한 규명)

  • Lee, Yong-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.219-228
    • /
    • 2006
  • In urban areas, tunnelling induced ground deformations, particularly ground settlements should be considered in order to minimize the damage of adjacent structures. Therefore, an appropriate monitoring system for the tunnel construction should be setup at the planning or design stage. A number of studies on ground settlements due to tunnelling in soft ground have been carried out so far. However, most studies have focused on clay soil rather than sand soil. In particular, a few studies on behaviour of subsurface deformations in granular material have been reported. In this study, two-dimensional laboratory model test with aluminium rods regarded as continuum granular material and close range photogrammetric technique, and numerical analysis were carried out in order to identify the behaviour of subsurface deformations due to shallow tunnelling. Direction and magnitude of displacement vectors from the model test was identical to the numerical analysis. In particular, the vector direction was appeared to be toward a point below the tunnel invert level. A narrow 'chimney or tulip like' pattern of vertical displacement was confirmed by both the model test and numerical analysis. This is consistent with the field data. In addition to the qualitative comparison, the quantitative comparison of subsurface settlements according to 2D volume loss showed good agreement between the model test and numerical analysis. Therefore, close range photogrammetric technique applied in the model test may be used to validate the result from the continuum numerical analysis.

  • PDF

Damage Analysis of Nearby Structures with the Consideration of Tunnel Construction Conditions in Sandy and Clayey Ground (모래 및 점토지반에서 터널시공조건을 고려한 인접구조물의 손상도 분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.53-63
    • /
    • 2011
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different ground (loose sand, dense sand, soft clay, stiff clay) and construction conditions (ground loss). The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different ground and construction conditions (ground loss) using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of ground and construction conditions (ground loss) considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of ground and construction conditions (ground loss) using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.

Adhesion of clay to metal surface; Normal and tangential measurement

  • Basmenj, Amir Khabbazi;Ghafoori, Mohammad;Cheshomi, Akbar;Azandariani, Younes Karami
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.125-135
    • /
    • 2016
  • Adhesion in geotechnical engineering is the interaction between cohesive soil and a solid surface which can cause clogging in mechanized tunnelling through clayey formations. Normal piston pull out and modified direct shear tests were performed on clayey soil samples to determine which type of adhesion stress, normal or tangential, could be most effectively measured. Measured values for normal adhesion ranged from 0.9 to 18 kPa. The range of tangential adhesion was 2.4 to 10 kPa. The results indicate normal adhesion results were more accurate than those for the modified direct shear test that measure tangential adhesion. Direct shear test on identical samples did not show any correlation between measured cohesion and normal adhesion values. Normal adhesion values have shown significantly meaningful variation with consistency index and so are compatible with the base of field clogging assessment criteria. But tangential adhesion and cohesion were not compatible with these assessment criteria.

Numerical study on basal heave stability of a circular vertical shaft constructed in clay (연약 점성토 지반에 시공되는 원형 수직구의 히빙 안정성에 대한 수치해석적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.231-245
    • /
    • 2022
  • When vertical shafts are constructed in soft clay with low strength, there is a risk of basal heave, which causes the excavation surface to heave due to the low bearing capacity of the ground against the imbalance of earth pressure at the excavation surface. Methods of deriving a safety factor have been proposed to evaluate the stability against the basal heave. However, there are limitations in that it is difficult to accurately evaluate the heave stability because many assumptions are included in the theoretical derivation. In this study, assuming that a circular vertical shaft is constructed in soft clay, the existing safety factor equation proposed through a theoretical approach was supplemented. Bearing capacity according to the shaft geometry, inhomogeneity of the soil, and the effect of soil plug were considered theoretically and applied in a previous safety factor equation. A three-dimensional numerical analysis was conducted to simulate the occurrence of basal heave and review the supplemented equation through various case studies. Several series of case studies were conducted targeting various factors affecting heave stability. It was verified that the additionally considered characteristics were properly reflected in the supplemented equation. Furthermore, the effects of each factor constituting the safety factor equation were examined using the results of the numerical analysis performed by simulating various cases. It was confirmed that considering the undrained shear strength increment according to depth had the most significant effect on the calculation of the safety factor.

Experimental and Numerical Study of Interactions Between Parallel Tunnels (평행근접터널의 상호거동에 대한 실험 및 수치해석적 연구)

  • Kim, Sang-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.181-187
    • /
    • 2003
  • This paper describes a study of the influence of shield tunnel construction on the displacements and stresses induced in the linings of existing nearby parallel tunnels. The paper presents a brief review of a set of laboratory scale model research programme investigating the influence of tunnel proximity and alignment, liner stiffness on the nature of the interactions between closely spaced tunnels in clay. A total of two sets of carefully controlled physical model tests were performed. A cylindrical test tank was developed and used to produce clay samples of Speswhite kaolin. In each of the tests, three model tunnels were installed in order to conduct two interaction exts that have been carried out to investigate the interaction problem between parallel tunnels. The results of these tests are compared with the results of finite element analysis to investigate the techniques that must be used to obtain reliable numerical solutions to this type of problem.

Model Tests Investigating the Ground Movements Associated with Twin Side-by-Side Tunnel Construction in Clay (점성토 트윈 병렬 터널로 인한 지반침하 연구를 위한 모형실험)

  • Ahn, Sung-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.77-85
    • /
    • 2009
  • This paper describes the findings obtained from a research project aimed at investigating, via 1 g laboratory model tests, the ground movements caused by multiple side-by-side (sbs) tunnel construction in clay. The ground movements above a second tunnel showed different trends from those observed above a first tunnel. These trends include an increase in the overall volume loss, and a widening of the settlement troughs on the near limb of the trough accompanied by a shift of the maximum settlement towards existing tunnel. This would suggest that the use of simple predictive methods of adopting a Gaussian curve for analysing the ground settlements associated with twin (sbs) tunnel construction is not appropriate. Therefore the current paper adopts a method that modifies the Gaussian curve approach in order to improve the predictions. This paper comments on the parameter selection involved with adopting this new method to apply it to full-scale field situations, and also discusses its limitations.