• Title/Summary/Keyword: Tunneling Electron

Search Result 182, Processing Time 0.026 seconds

Study of the Effects of the Antisite Related Defects in Silicon Dioxide of Metal-Oxide-Semiconductor Structure on the Gate Leakage Current

  • Mao, Ling-Feng;Wang, Zi-Ou;Xu, Ming-Zhen;Tan, Chang-Hua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.164-169
    • /
    • 2008
  • The effects of the antisite related defects on the electronic structure of silica and the gate leakage current have been investigated using first-principles calculations. Energy levels related to the antisite defects in silicon dioxide have been introduced into the bandgap, which are nearly 2.0 eV from the top of the valence band. Combining with the electronic structures calculated from first-principles simulations, tunneling currents through the silica layer with antisite defects have been calculated. The tunneling current calculations show that the hole tunneling currents assisted by the antisite defects will be dominant at low oxide field whereas the electron direct tunneling current will be dominant at high oxide field. With increased thickness of the defect layer, the threshold point where the hole tunneling current assisted by antisite defects in silica is equal to the electron direct tunneling current extends to higher oxide field.

A Study on the Leakage Current Voltage of Hybrid Type Thin Films Using a Dilute OTS Solution

  • Kim Hong-Bae;Oh Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.21-25
    • /
    • 2006
  • To improve the performance of organic thin film transistor, we investigated the properties of gate insulator's surface according to the leakage current by I-V measurement. The surface was treated by the dilute n-octadecyltrichlorosilane solution. The alkyl group of n-octadecyltrichlorosilane induced the electron tunneling and the electron tunneling current caused the breakdown at high electric field, consequently shifting the breakdown voltage. The 0.5% sample with an electron-rich group was found to have a large leakage current and a low barrier height because of the effect of an energy barrier lowered by, thermionic current, which is called the Schottky contact. The surface properties of the insulator were analyzed by I-V measurement using the effect of Poole-Frankel emission.

  • PDF

Electromagnetic Resonant Tunneling System: Double-Magnetic Barriers

  • Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.128-133
    • /
    • 2014
  • We study the ballistic spin transport properties in a two-dimensional electron gas system in the presence of magnetic barriers using a transfer matrix method. We concentrate on the size-effect of the magnetic barriers parallel to a two-dimensional electron gas plane. We calculate the transmission probability of the ballistic spin transport in the magnetic barrier structure while varying the width of the magnetic barriers. It is shown that resonant tunneling oscillation is affected by the width and height of the magnetic barriers sensitively as well as by the inter-spacing of the barriers. We also consider the effect of additional electrostatic modulation on the top of the magnetic barriers, which could enhance the current spin polarization. Because all-semiconductor-based devices are free from the resistance mismatch problem, a resonant tunneling structure using the two-dimensional electron gas system with electric-magnetic modulation would play an important role in future spintronics applications. From the results here, we provide information on the physical parameters of a device to produce well-defined spin-polarized current.

Electron Tunneling Time through a Single Potential Barrier (하나의 전위장벽에 대한 전자의 터널링 시간)

  • Lee, Wook;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1262-1264
    • /
    • 1995
  • The question-"How fast a electron tunnels a potential barrier?" looks like simple, but is controversy for more than 40 years. Because "tunneling" involves complicated internal processes and its definition is ambiguous. Recent experiments showed that the phase time is the best model of tunneling time among other times-for example, dwell time, Larmor clock time etc. In this paper, we simulated the tunneling time for Gaussian wave packet by program InterQuanta and compared with the phase time. In particular we focused on the effect of wave packet spreading in momentum space(or real space) which is not expressed by the phase time formula.

  • PDF

Analysis of Intramolecular Electron Transfer in A Mixed-Valence Cu(Ⅰ)-Cu(Ⅱ) Complex Using the PKS Model

  • So Hyunsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.385-388
    • /
    • 1992
  • The transition probabilities for the thermal intramolecular electron transfer and the optical intervalence transfer band for a symmetric mixed-valence Cu(I)-Cu(II) compound were used to extract the PKS parameters $\varepsilon$ = -1.15, ${\lambda}$ = 2.839, and ${\nu}g$- = 923 $cm^{-1}$. These parameters determine the potential energy surfaces and vibronic energy levels. Three pairs of vibrational levels are below the top of the energy barrier in the lower potential surface. The contribution of each vibrational state to the intramolecular electron transfer was calculated. It is shown that the three pairs of vibrational states below the top of the barrier are responsible for most of the electron transfer at 261-306 K. So the intramolecular electron transfer in this system is a tunneling process. The transition probability exhibits the usual high-temperature Arrhenius behavior, but at lower temperature falls off to a temperature-independent value as tunneling from the lowest levels becomes the limiting process.

Tunneling Magnetoresistance of a Ramp-edge Type Junction With Si3N4 Barrier (Si3N4장벽층을 이용한 경사형 모서리 접합의 터널링 자기저항 특성)

  • Kim, Young-Ii;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.201-205
    • /
    • 2002
  • The tunneling magnetoresistance (TMR) of a ramp-edge type junction has been studied. The samples with a structure of NiO(60)/Co(10)/NiO(60)/Si$_3$N$_4$(2-6)/NiFe(10) (nm) were prepared by the sputtering and etched by the electron cyclotron (ECR) argon ion milling. Nonlinear I-V characteristics was obtained from a ramp-type tunneling junctions having the dominant difference between zero and +90 Oe perpendicular to the junction edge line. The voltage dependence of TMR was stable up to a bias volt of $\pm$10 V with a TMR ratio of about -10%, which may be very peculiar magnetic tunneling properties with asymmetric tunneling process between wedge Co pinned layer and NiFe free layer.

Geometrical and Electronic Structure of Epitaxial Graphene on SiC(0001) : A Scanning Tunneling Microscopy Study

  • Ha, Jeong-Hoon;Yang, Hee-Jun;Baek, Hong-Woo;Chae, Jung-Seok;Hwang, Beom-Yong;Kuk, Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.368-368
    • /
    • 2010
  • Monolayers of graphite can be grown by fine controlled surface graphitization on the surfaces of various metallic and semiconducting materials. Epitaxial graphene grown on polished silicon carbide crystal surfaces has drawn much attention due to well known vacuum annealing procedures from surface analysis methods, especially scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). In this study, we have grown single layer and few layer graphene on silicon terminated 6H-SiC(0001) crystals. The growth of graphene layers were observed by low energy electron diffraction(LEED) patterns. Scanning tunneling microscopy and spectroscopy measurements were performed to illustrate the electronic structure which may display some clue on the influence of the underlying structure. Spatially resolved STS results acquired at the edges of epitaxial graphene show in detail the electron density of states, which is compared to theoretical calculations. STM measurements were also done on graphene films grown by chemical vapor deposition(CVD) and transferred onto a SiC(0001) crystal. These observations may provide a hint for the understanding of carrier scattering at the edges.

  • PDF

TM polarized photon tunneling in a frustrated total internal reflection structure (Frustrated Total Internal Reflection 구조에서의 TM 편광된 광자의 터널링)

  • Lee, Byoung-Ho;Lee, Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.112-119
    • /
    • 1996
  • TM polarized photon tunneling time and the position where TM photons appear after two-dimensional tunneling in a frustrated total internal reflection (FTIR) structure are calculated. This is done by converting the FTIR tunneling problem of TM photons to an electron tunneling problem with a position-dependent effective mass for a heterostructure potential barrier. Derived results are compared with TE photon cases.

  • PDF

Large Tunneling Magnetoresistance of a Ramp-type Junction with a SrTiO3 Tunneling Barrier

  • Lee, Sang-Suk;Yoon, Moon-Sung;Hwang, Do-Guwn;Rhie, Kung-Won
    • Journal of Magnetics
    • /
    • v.8 no.2
    • /
    • pp.89-92
    • /
    • 2003
  • The tunneling magnetoresistance (TMR) of a ramp-edge type junction with SrTiO$_3$barrier layer has been stud-ied. The samples with a structure of glass/NiO(600${\AA}$)/Co(100${\AA}$)/SrTiO$_3$(400 ${\AA}$)/SrTiO$_3$(20-100${\AA}$)/NiFe(100${\AA}$) were prepared by the sputtering and etched by the electron cyclotron (ECR) argon ion milling. Nonlinear I-V characteristics were obtained from a ramp-type tunneling junctions, having the dominant difference between two different external magnetic fields (${\pm}$100 Oe) perpendicular to the junction edge line. In the SrTiO$_3$ barrier thickness of 40${\AA}$, the TMR was 52.7% at a bias voltage of -50 mV The bias voltage dependence of resistance and TMR in a ramp-type tunneling junction was similar with those of the layered TMR junction.