• Title/Summary/Keyword: Tunnel reinforcements

Search Result 30, Processing Time 0.022 seconds

A Study on the Design/construction Standard of Unlined Tunneling Method (Unlined Tunnel 공법 지보재의 설계 및 시공 기준 고찰)

  • 서영화;김성구;나승훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.121-134
    • /
    • 2002
  • Tunneling is a very dangerous and expansive work. Especially, the concrete lining works need many long hours and much cost. As an alternative, the unlined tunneling methods including NMT have been developed in various country. These methods have advantages in cost, time and quality. In Korea, many considerations have been conducted to apply the unlined tunneling method in comparatively good rock. Since primary reinforcements play the role of the final supporting system in unlined tunnels, the initial stiffness and long term durability of reinforcements are very important for tunnel safety. To establish the reinforcements standard suitable to Korea, we investigated the foreign standards and construction cases, comparing geological and construction conditions of foreign land and Korea. As the result, we have proposed the standard of primary supporting system for unlined tunnel in aspects of material, design, construction and quality control etc.

  • PDF

Reduced-Scale Model Tests on the Behavior of Tunnel Face Reinforced with longitudinal reinforcements (수평보강재로 보강된 터널 막장의 거동에 관한 축소 모형실험)

  • 유충식;신현강
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.79-86
    • /
    • 2000
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A series of reduced-scale model tests was carried out to in an attempt to verify previously performed three-dimensional numerical modeling and to investigate effects of reinforcement layout on the tunnel face deformation behavior The results of model tests indicate that the tunnel face deformation can significantly reduced by pre-reinforcing the tunnel face with longitudinal members and thus enhancing the tunnel stability. In addition, the model tests results compare fairly well with those from the previously performed three-dimensional finite element analysis. Therefore, a properly calibrated three dimensional model may effectively be used in the study of tunnel face reinforcing technique.

  • PDF

A Safety Evaluation of Cable Tunnel Exposed to Fire (화재피해 통신구의 안전진단)

  • 김지상;김형우;김효환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.221-226
    • /
    • 1994
  • A safety evaluation of cable tunnel, which is a concrete box structure with telecommunication facilities in it, exposed to fire is given. The immediate field observation was performed to find out any sign of sudden structural failure. In some region, where the fire intensity was heavy, the spalling of concrete cover in upper slab occurred. Next, more careful investigation was done with proper non-desturctive testing methods and structural analysis taking into account the changes in material properties due to fire. It seems that there is no severe damage on concrete, reinforcements and over all structural system.

  • PDF

Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 박시현;이석원;이규필;배규진;전오성;이종성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.149-156
    • /
    • 2002
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process of the ground material. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells, installed after construction of the tunnel lining, measure the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measuring results in the field, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process of the ground material. Considerations on the validity of the measuring results were paid. For the analysis of measurements, after dividing back fill process into three steps, various factors which affect on the behavior of tunnel lining were investigated at each step.

  • PDF

A Case Study on the Ground Reinforcement Method and Effect of the Failed Tunnel (터널붕괴지반의 보강공법 및 효과에 대한 사례연구)

  • Cho, Hyun;Lim, Jae-Seung;Chung, Yoon-Young;Choi, Sang-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.293-300
    • /
    • 1999
  • The maintenance for the stability of tunnel, especially on downtown area, careful check must be considered during construction stage and after. Moreover we have to achieve the stability of tunnel by ground improvement and reinforcement when ground condition is bad or tunnel failures under the various ground conditions. In this paper, it is presented the case of tunnel failure and the state of restoration by ground reinforcements at seoul subway $\bigcirc$-$\bigcirc$ construction site. For the purpose of ground reinforcement, first, curtain wall was established by chemical grouting. Secondly, cement milk grouting was carried by upper part of tunnel crown. Also Boreholes loading test and tunnel monitoring were carried by in failure site for the long term stability of tunnel.

  • PDF

Structural performance evaluation of precast concrete segment using synthetic fibres (프리캐스트 콘크리트 세그먼트의 합성섬유 보강재 적용에 따른 구조적 성능 평가)

  • Lee, Hoseong;Kim, Changyong;Lee, Sean S.;Kim, Seungjun;Lee, Kyeongjin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.469-483
    • /
    • 2018
  • Steel bars have been widely used as the primary reinforcement for Precast Segmental Concrete Lining for TBM Tunnels. Previously, studies have been carried out to gauge the potential for steel fiber reinforcement to replace the use of steel bar reinforcements in the segmental lining to reduce the amount of the steel bar reinforcement. Steel fiber reinforcements have been investigated and widely applied to SFRC TBM linings to improve the constructability of SFRC TBM linings worldwide. However, the steel fiber reinforcement often caused punctures to the water membranes inside tunnel lining and had long-term durability deterioration issues caused by steel corrosion, as well as cosmetic problems. Therefore, this paper sought to gauge the potential of synthetic fiber reinforcements, which have proven to be very attractive substitutes for steel fiber reinforcements. This study analyzed the performance of both steel and synthetic fiber reinforcements in segmental linings and evaluated the applicability of the fiber reinforcements to the TBM Precast Concrete Segmental Linings of TBM tunnels. As a conclusion, this study demonstrates that the potential use of steel and synthetic fibers in various combination, can substitute the rebar reinforcement in the concrete mix for segmental concrete linings.

Theory and Analysis Method of Tunnel Convergence (터널 내공변위의 이론과 계측결과의 분석)

  • 김호영;박의섭
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.80-95
    • /
    • 1993
  • Convergence measurements play very important role in the assessment of stability of a tunnel and of the economics of rock reinforcements. The characteristics of convergences are both due to the face advance effect and the time-dependent behaviour of rocks. As the convergence law can be modeled as a specific function of two variables of distance and time, we can determine the type of function and the related parameters from the field measurements. By using the regression method based on the Levengberg-Marquardt algorithm, an analysis of convergence of two different tunnels and one numerical example is described. It is shown that the convergence can be modeled as following function, C(x)=a{1-exp(-bx)} or C(t)=a{1-exp(-bt)} in case of a tunnel excavated in elastic rocks, in case of elasto-plastic or over stressed rocks.

  • PDF

Long-Term Experiments for Demonstrating Durability of a Concrete Barrier and Gas Generation in a Low-and Intermediate-Level Waste Disposal Facility

  • Kang, Myunggoo;Seo, Myunghwan;Kim, Soo-Gin;Kwon, Ki-Jung;Jung, Haeryong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.267-270
    • /
    • 2021
  • Long-term experiments have been conducted on two important safety issues: long-term durability of a concrete barrier with the steel reinforcements and gas generation from low-and intermediate-level wastes in an underground research tunnel of a radioactive waste disposal facility. The gas generation and microbial communities were monitored from waste packages (200 L and 320 L) containing simulated dry active wastes. In the concrete experiment, corrosion sensors were installed on the steel reinforcements which were embedded 10 cm below the surface of concrete in a concrete mock-up, and groundwater was fed into the mock-up at a pressure of 2.1 bars to accelerate groundwater infiltration. No clear evidence was observed with respect to corrosion initiation of the steel reinforcement for 4 years of operation. This is attributed to the high integrity and low hydraulic conductivity of the concrete. In the gas generation experiment, significant levels of gas generation were not measured for 4 years. These experiments are expected to be conducted for a period of more than 10 years.

Investigation on the Behavior of Tunnel Face Reinforced with Longitudinal Reinforcements using Reduced-Scale Model Tests (모형실험에 의한 수평보강재로 보강된 터널 막장의 거동 분석)

  • Yoo, Chung-sik;Shin, Hyun-Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.32-40
    • /
    • 2000
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A series of reduced-scale model tests was carried out to in an attempt to verify previously performed three-dimensional numerical modeling and to investigate effects of reinforcement layout on the tunnel face deformation behavior. The results of model tests indicate that the tunnel face deformation can significantly reduced by pre-reinforcing the tunnel face with longitudinal members and thus enhancing the tunnel stability. In addition, the model tests results compare fairly well with those from the previously performed three-dimensional finite element analysis. Therefore, a properly calibrated three dimensional model may effectively be used in the study of tunnel face reinforcing technique.

  • PDF

Flexural Behavior of Reinforced Ribs of Shotcrete for Various Configurations of Reinforcements (철근배근형태에 따른 철근보강 숏크리트의 휨파괴 거동특성 연구)

  • Park, Yeon-Jun;Lee, Jung-Ki;Noh, Bong-Kun;You, Kwang-Ho;Lee, Sang-Don
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.169-182
    • /
    • 2010
  • H-beam and lattice-girder are the two most commonly used steel supports in domestic tunnels. Reinforced Ribs of Shotcrete(R.R.S.), which is frequently used in Scandinavian countries, is yet to be employed in Korea despite its advantages over H-beam or lattice girder in terms of economy and constructional efficiency. In this study, laboratory tests were conducted to determine the most suitable design of R.R.S in domestic tunnels. Various configuration of steel reinforcements including double layer of steel rebars were tested and compared. Reinforcement with H-beam and lattice girder were also analyzed. Results of this study can be of great use in selecting and designing of tunnel supports when the tunnel is excavated by NATM or Norwegian Method of Tunnelling(NMT).