• 제목/요약/키워드: Tunnel pressure

검색결과 1,396건 처리시간 0.028초

고속열차의 터널 진입시 발생하는 압력변화에 대한 수치 해석적 연구 (A Numerical Study on the Pressure Variation in the Tunnel Entrance of High Speed Train)

  • 이호석;김동현
    • 한국도시철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.309-317
    • /
    • 2018
  • Sudden pressure changes caused by the high-speed train entering the entrance of the tunnel are propagated into the tunnel and spread out around the tunnel in the form of a micro pressure wave at the exit of the tunnel. This phenomenon can cause noise and vibration around the tunnel, causing damage to the surroundings. Analysis of this phenomenon is very difficult, but the development of analytical technology has revealed more phenomena than in the past. In this study, we propose this method of analysis and compare it with the experimental data to show the data with higher reliability.

철도터널 통풍공의 내경변화에 따른 공기역학적 성능 (The aerodynamic performance of air-shafts with different inner diameters in the railroad tunnel)

  • 김동현;강부병;신민호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.578-584
    • /
    • 2001
  • Purpose of the present study is to investigate the aerodynamic performances of air-shafts with different inner diameters in a single track tunnel for reducing pressure fluctuations and micro pressure waves. Three configurations of air-shafts with different inner diameters were examined for comparison of aerodynamic performances. Experiments were performed with a 1/61-scale moving model rig for the tunnel of 0.764 km length and the train of 4 cars per 1 unit. The results showed the reduction effect of the maximum pressure fluctuations in tunnel and micro-pressure waves radiating towards the surroundings from the tunnel exit according to the increase of the diameter of 10 air-shafts spaced equally.

  • PDF

입구후드가 고속열차 터널의 압력에 미치는 영향에 대한 수치해석 적 연구 (Numerical Simulation for the Effect of Entrance Hood on Pressure of High Speed Railway Tunnel)

  • 김동현;이재범;양신추;이희성;오일근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.406-413
    • /
    • 1999
  • A compression wave is generated by the high speed train which enters a tunnel, and it propagates along the tunnel. When the compression wave emerges from the exit of the tunnel, it causes an impulsive noise, and the strength of the impulsive noise depends on the pressure gradient of the first compression wave. So it needs to reduce the pressure gradient for the minimization of impulsive noise. The entrance hood is used for the reduction of the pressure gradient. In the present study, the pressure transients were numerically calculated for three shapes of hood, In order to validate the numerical simulation, the pressure and pressure gradient were compared with the experimental data of moving model rig. The calculation results won well agreed with the experimental data, and also showed that the hood had an effect on the pressure gradient of the tunnel inside.

  • PDF

KTX차량 내외부의 압력변동 특성에 관한 연구 (A Study on the Characteristics of Internal and External Pressure Variation for KTX)

  • 남성원
    • 한국철도학회논문집
    • /
    • 제7권1호
    • /
    • pp.26-31
    • /
    • 2004
  • A study is conducted to clarify internal and external pressure variation of passenger cabin for KTX. These pressure variation may give rise to the ear-discomfort for passenger and fatigue for carbody. In this study, the pressure variation of interior, gangway and exterior of KTX passenger car is measured by using the atmospheric pressure sensors and portable data acquisition system. The tunnel from 4000m to 200m in length are chosen far the investigation of tunnel length effects. From the results of experiment, the pressure variation of interior per second is under the ear-discomfort limitation in all of tunnel. And, We found that there are similar patterns of exterior pressure variation for each critical tunnel length. These results generally agree to RTRI's experimental result fur Shinkansen.

승객 이명감 기준을 만족하는 고속철도 터널 최소 단면적에 대한 연구 (A STUDY ON THE MINIMUM CROSS-SECTIONAL AREA OF HIGH-SPEED RAILWAY TUNNEL SATISFYING PASSENGER EAR DISCOMFORT CRITERIA)

  • 권현빈
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.62-69
    • /
    • 2015
  • Pressure change inside cabin as well as in tunnel has been calculated to assess the passenger pressure comfort of high-speed train. $C-STA^{TM}$, a CFD program based on axi-symmetric Navier-Stokes equation and Roe's FDS has been used to simulate the pressure change in tunnel during a high-speed train passing through it. To present the relative motion between the train and the tunnel, a modified patched grid scheme based on the structured grid system has been employed. The simulation program has been validated by comparing the simulation results with field measurements. Extensive parametric study has been conducted for various train speed, tunnel cross-sectional area and tunnel length to the pressure change in cabin. KTX-Sancheon(KTX2) high-speed train has been chosen for simulation and the train speed have been varied from 200 km/h to 375 km/h. The tunnel length has been varied from 300 m to 7.5 km and tunnel area from $50m^2$ to $120m^2$. Total 504 simulations have been conducted varying the parameters. Based on the database produced from the parametric simulations, minimum tunnel cross-sectional area has been surveyed for various train speeds based on Korean regulation on pressure change in cabin.

300km/h급 고속철도의 터널 미기압파 저감을 위한 슬릿후드의 실험적 연구 (Experimental study on the alleviation of micro-pressure waves radiated from the tunnel exit with the slit hoods on the high-speed train operations of 300km/h)

  • 김동현;민동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.619-624
    • /
    • 2000
  • The purpose of present study is to investigate for reducing micro pressure waves generated according to train speeds $(240km/h{\sim}380km/h)$ through tunnels with countermeasures as followings; the hood configuration in tunnel entrance. We developed hoods for tunnel of 0.5 km length in the condition of tunnel cross-section area of $107m^2$ on the slab track. According to the results the maximum micro-pressure wave is reduced by 41.2% for the slit hood installed at the entrance of the tunnel and reduced by 47.7% for the slit hood installed at the entrance of the tunnel and the $45^{\circ}$ slanted portal at the exit of the tunnel

  • PDF

파쇄대를 통과하는 해저터널의 수리거동에 관한 연구 (Hydraulic behavior of a subsea tunnel in a ground with fractured-zones)

  • 신종호;최규철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1571-1580
    • /
    • 2008
  • Subsea tunnels that link land to island and among nations for transportation, efficient development of limited surface and pursuit of economic development should be designed to support pore water pressure on the lining. It is generally constructed in the bed rock of the sea bottom. When the tunnel excavation face meets fractured-zones below sea bottom, collapse may occur due to an increase of pore water pressure and large inflow. Such an example can be found in the Norwegian subsea tunnel experiences in 1980's. In this study hydraulic behavior of tunnel heading is investigated using numerical method based on the collapse of Norwegian subsea tunnel. The effect of pore water pressure and inflow rate were mainly concerned. Horse-shoe shaped model tunnel which has 50 m depth from the sea bottom is considered. To evaluate hydraulic performance, parametric study was carried out for varying relative permeability. It is revealed that pore water pressure has increased with an increase of sea depth. Especially, at the fractured-zone, pore water pressure on the lining has increased significantly. Inflow rate into tunnel has also increased correspondingly with an increase in sea depth. S-shaped characteristic relation between relative permeability and normalized pore water pressure was obtained.

  • PDF

공기 압력 제어 덕트를 이용한 철도 터널 내 공기 압력 저감에 대한 수치해석 연구 (A Numerical Study on the Pressure Relief in a Tunnel Using a Pressure Relief Duct)

  • 서상연;하희상;이상필
    • 터널과지하공간
    • /
    • 제26권5호
    • /
    • pp.375-383
    • /
    • 2016
  • 최근에는 세계 여러 나라에서 고속철도 건설에 대한 계획이 증가하고 있으며, 국내의 경우 수도권 광역 급행철도(GTX)와 같은 대심도 지하 교통망의 건설이 추진되고 있다. 열차가 고속으로 주행할 경우 발생하는 공기 저항을 최소화하기 위하여 열차의 선두부는 유선형으로 설계된다. 열차가 터널 내로 진입할 때, 터널 내에서 발생하는 공기 저항으로 인하여 열차 내 승객은 이명감과 같은 불편함을 느끼게 된다. 이러한 이명감을 감소시키기 위해서는 터널 내에서 발생하는 공기역학적 특성을 고려하여 터널의 단면적을 선정하여야 한다. 이 연구에서는 터널 내에서 열차의 고속 주행을 위해 필요한 공기 압력 제어 시스템이 이명감 감소에 미치는 효과를 분석하기 위하여 1차원 네트워크 모델링 프로그램인 THERMOTUN을 이용하여 공기압 분포에 대한 1차원 네트워크 수치해석을 수행하였다.

Experimental Study on the Characteristics of Pressure Variation of KTX Passing Through Tunnel

  • Nam, Seong-Won
    • International Journal of Railway
    • /
    • 제1권4호
    • /
    • pp.169-174
    • /
    • 2008
  • Experimental study has been conducted to clarify the internal and external pressure variation characteristics for KTX(Korea Train eXpress) passing through tunnel. Abrupt pressure variation gives rise to the ear-discomfort for passenger and fatigue for car body. In this study, the internal and external pressure variation are measured by using KTX real train experiment and on-board portable data acquisition system in Gyeongbu high speed commercial line. The tunnels from 200 m to 4000 m in length are chosen for the investigation of tunnel length effects. From the results of experiment, the internal pressure variation rate for all the test tunnels is lower than the standard criteria of 200 Pa/s. And, the critical tunnel lengths for pressure wave pattern are classified into 7 groups by using the theoretical L-t diagram analysis.

  • PDF

철도터널내 압력변동 및 터널 미기압파 저감 시험장치개발에 관한 연구 (Development of a new test facility for the study of pressure transients in tunnel and micro-pressure waves radiated from the tunnel exit on the railroad)

  • 김동현;오일근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.611-618
    • /
    • 2000
  • The test facility of the 1/60-scale models for the train-tunnel interactions was recently developed to investigate the effects of entry portal shapes, hood shapes and air-shafts for reducing the micro-pressure waves radiating to the surroundings of the tunnel exits by KRRI in Korea. The launching system of train model was chosen as air-gun type. In present test rig, after train model is launched, the blast wave by the driver did not enter to inside of the tunnel model. The train model is guided on the one-wire system from air-gun driver to the brake parts of test facility end. Some cases of the experiments were compared with numerical simulations to prove the test facility.

  • PDF