• Title/Summary/Keyword: Tunnel pressure

Search Result 1,410, Processing Time 0.043 seconds

Analysis on the Characteristics of Pressure Fluctuation for High Speed Train passing through Tunnels (고속열차가 터널내에서 받는 압력변동 특성 분석)

  • Park Choon-Soo;Seo Sung-Il;Kim Ki-Hwan;Lee Uk-Jae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.690-695
    • /
    • 2004
  • In order to develop a high speed train, various conditions have been considered. Fatigue strength assessment by the fluctuation of pressure is an important one. In this study, the fluctuation and frequency of pressure is measured when KHST(Korean High Speed Train) passes through tunnels in the Kyung-Bu high-speed line. And the characteristics of pressure fluctuation is analysed and formulated. The results of analysis are as follows. The train entering speed and fluctuation value are related. The pressure increasing is generated in proportion to train velocity at leading car. When two train is passing through the tunnel, the pressure value is $1.5\~2$ times higher than one train is passing. The damping ratio of pressure fluctuation is about $92\%$. The number of pressure fluctuation in a tunnel is 4 to 6 times. The result in this study would be a good guidance to calculate the fatigue life and the reliability index of body structure.

  • PDF

An Experimental Study on the Two Dimensional Behaviors due to Excavation of Crossed Tunnel below existing tunnel (기존터널 하부에 교차하여 굴착되는 터널의 2차원 거동 특성에 대한 실험적 연구)

  • Hong, Suk-Bong;Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.119-131
    • /
    • 2005
  • The two dimensional behaviors of the existing upper tunnel and the ground at crossed area due to the excavation of a lower tunnel were studied experimentally, The model tests were conducted by changing the relative location of the existing upper tunnel and the lower tunnel. The results of the study show that a vertical earth pressure outside the loosened area was increased due to longitudinal arching effect same as a single tunnel. In case vertical distance between the upper and lower tunnel is 0.7 H and 1.0 H respectively (H is a height of the lower tunnel), vertical earth pressure increased in the loosened area behind the tunnel face. But when a vertical distance is 1, 3 H, ground behaviors appeared similarly to a single tunnel.

  • PDF

Model Test and Numerical Analysis for Failure Behaviour of Shallow Tunnel Considering Unsupported Tunnel Length (굴진장을 고려한 얕은 터널파괴거동에 대한 모형실험 및 수치해석)

  • Kim, Young-Min
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.400-410
    • /
    • 2005
  • During excavation of shallow tunnels in soft ground, failure mechanism around the tunnel face have major influence on the stability of tunnels. In this paper, a series of laboratory tests under plane strain condition on the small scale of a shallow tunnel considering unsupported tunnel length has been performed. The results have shown that tunnel failure mechanism changes from failure mode 1 to failure mode 2 as unsupported tunnel length increases. By comparing the experimental and the numerical results, the loosening pressure for the shallow tunnel and progressive failure have been investigated.

Effect of Tunnel Advance Rate on the Seepage Forces Acting on the Tunnel Face (터널굴진율이 막장에서의 침투력에 미치는 영향에 관한 연구)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.327-333
    • /
    • 2002
  • In this study, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was studied. From this study, it was concluded that the tunnel advance rate must be taken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology for the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for underwater tunnels.

  • PDF

A study on the behaviour of pre-existing single piles to adjacent shield TBM tunnelling from three-dimensional finite element analyses (3차원 유한요소해석을 통한 shield TBM 터널 근접시공에 의한 인접 단독말뚝의 거동에 대한 연구)

  • Jeon, Young-Jin;Jeon, Seung-Chan;Jeon, Sang-Joon;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.23-46
    • /
    • 2020
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles to adjacent tunnelling by considering the tunnel face pressures and the relative location of pile tips with respect to the tunnel. The numerical modelling has analysed the effect of the face pressures on the pile behaviour. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. The head settlements of the pile (the vertical distance between the pile and the tunnel: 0.25D, where D is the tunnel diameter) directly above the tunnel crown with the face pressure 50% of the in-situ horizontal soil stress at the tunnel springline decreased by about 38% compared to corresponding settlements with a face pressure 25% of the in-situ horizontal soil stress at the tunnel springline. Furthermore, it was found that the smaller the face pressure, the larger the tunnelling-induced ground movements and the axial pile forces were and the higher the degree of the shear strength mobilisation at the pile-soil interface. When the piles were outside the tunnel influence zone, compressive pile forces were developed due to tunnelling. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures and the position of the pile tip relative to the tunnel. In addition, the computed results have been compared with relevant studies previously reported in literature. The behaviour of the piles has been extensively examined and analysed by considering the key features in great detail.

Theoretical and Numerical Study on the Support Pressure for Tunnel Face Stability in Shield TBM Construction (쉴드터널 시공 시 막장안정을 위한 지보압의 이론적.수치해석적 고찰)

  • Kim, Kwang-Jin;Koh, Sung-Yil;Choo, Seuk-Yeun;Kim, Jong-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.197-204
    • /
    • 2006
  • A large sectional tunnelling method using Shield TBM is expected to be popular as domestic demand of long tunnel gets growing. Although a shield tunnelling method has been recognized as prominent method in consideration of stability and applicability in shallow and poor ground, the cases of accident and constructional trouble have been often happened due to unexpected poor ground condition, or selection and use of improper shield machine. Especially, troubling cases at tunnel face are frequently occurred, so supporting pressure control of tunnel face would be the main issue for securing safer and more efficient tunnel excavation using Shield TBM. In this point, we carried out the numerical feed-back analysis to compare the ground deformation pattern with theoretical result at tunnel face.

A case study of life cycle cost analysis on high pressure sodium lamp and LED lamp for tunnel lighting (터널 조명 고압나트륨램프와 LED램프의 LCC 분석 사례 연구)

  • Lee, Gyu-Phil;Kim, Jeong-Heum
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • Tunnel is the most energy-consuming structure in road due to the characteristic of using artificial lighting during day and night. Therefore, tunnel lights are being replaced by LED lamp that have advantages with respect to low power consumption. The best use of social overhead capital can be expected by considering the life cycle cost, because to tunnel structures are accompanied by a series of medium-to-long-term and continuous processes of replacing auxiliary facilities. In this study, the saving effect by LCC analysis was quantitatively analyzed by replacing tunnel light sources from high-pressure sodium lamps to LED lamps. The effect of reducing the replacement cycle by increasing the life of the lamps and the resulting maintenance cost is very significant, on replacing tunnel lighting light sources with LED lamp.

Measurement of Cavitation-Induced Pressure Fluctuation in a Large Cavitation Tunnel (대형 공동 수조에서의 변동 압력 계측)

  • Na, Yun-Cheol;Kang, Kwan-Hyoung;Kim, Young-Gi;Lee, Mu-Yeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.791-796
    • /
    • 2000
  • The cavitation-induced fluctuating pressure of the container ship named "Sydney Express" is measured in Samsung Large Cavitation Tunnel(SCAT). In the measurements, a complete ship model is employed. The effects of thrust coefficient and cavitation number on cavity pattern and cavitation-induced fluctuating pressure were investigated experimentally. It is demonstrated that the fluctuating pressure coefficient is very sensitive to the cavitation number. The results of cavitation and pressure fluctuations are compared with those of ITTC and HSVA, which shows fairly good agreement. It is exhibited that the removal of rudder can significantly change the loading condition of a propeller, and can reduce the fluctuating pressure coefficient almost by half.

  • PDF

Analysis on the Train-wind Pressure applied to Screen Door in Island-type Platform of Subway (지하철의 섬식 정거장에 설치된 스크린도어에 가해지는 열차풍압 해석)

  • Kim, Jung-Yup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.138-141
    • /
    • 2008
  • The screen doors installed in the station of subway are subject to the train-wind pressure caused by the operation of trains. The train-wind pressure has to be correctly estimated for the design of safe structure of screen doors. As three-dimensional numerical flow analysis technology has been significantly developed, the analysis on the train-wind pressure with diverse variables such as train specifications, train speed, tunnel and station configurations, and blockage ratio can be effectively carried out with three-dimensional numerical method. In this study, computational analysis of train-induced wind in a subway tunnel employing the screen doors are carried out by using the three-dimensional numerical method with the model of the moving boundary for the run of trains. While the numerical analysis of train-wind pressure was applied on the one island-type station in the Seoul Subway Line 2, maximum pressure of 494 Pa was estimated on the screen door when two trains pass each other at the speed of 80km/h in the platform.

  • PDF

Determination of Wind Pressure Coefficients around Prismatic Structures with Different Aspect Ratios (종횡비 변화에 따른 사각주형 구조물주위의 풍압계수 결정)

  • Suh, S.H.;Lee, K.Y.;Yoo, S.S.;Roh, H.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.52-62
    • /
    • 1995
  • The purpose of this study is to determine the wind pressure coefficients around prismatic structures with different aspect ratios. Air flows around a model of prismatic shape are investigated experimentally in the wind tunnel and simulated using finite volume method. Pressure distributions and the corresponding pressure coefficients are calculated from the experimental and numerical results. The effects of aspect ratios on the pressure coefficients are discussed extensively. The numerical results are compared with those of experiments. The simulated and experimental results for average wind pressure coefficients are considerably lower than those defined in the Korean Architectural Standard Code.

  • PDF