• 제목/요약/키워드: Tunnel flow

검색결과 1,443건 처리시간 0.025초

철도터널의 환기특성에 관한 연구 (The Characteristics of Ventilation in Railway Tunnel)

  • 유지오;신현준;이호석
    • 한국터널지하공간학회 논문집
    • /
    • 제2권2호
    • /
    • pp.22-31
    • /
    • 2000
  • 철도터널에서 오염물질의 거동은 열차의 운행조건 및 터널의 구조 등과 같은 다양한 인자에 의해 영향을 받아 매우 복잡한 양상을 보이게 된다. 본 연구에서는 SES프로그램을 수정하여 해석한 농도계산을 이용하여 철도터널에서 오염물질의 거동특성을 구명하고, 터널의 단면적, 길이 및 열차의 항력계수, 주행속도가 터널의 최대풍속 및 오염농도에 미치는 영향에 대한 분석결과를 제시하였다.

  • PDF

A Layered Network Flow Algorithm for the Tunnel Design Problem in Virtual Private Networks with QoS Guarantee

  • Song, Sang-Hwa;Sung, Chang-Sup
    • Management Science and Financial Engineering
    • /
    • 제12권2호
    • /
    • pp.37-62
    • /
    • 2006
  • This paper considers the problem of designing logical tunnels in virtual private networks considering QoS guarantee which restricts the number of tunnel hops for each traffic routing. The previous researches focused on the design of logical tunnel itself and Steiner-tree based solution algorithms were proposed. However, we show that for some objective settings it is not sufficient and is necessary to consider both physical and logical connectivity at the same time. Thereupon, the concept of the layered network is applied to the logical tunnel design problem in virtual private networks. The layered network approach considers the design of logical tunnel as well as its physical routing and we propose a modified branch-and-price algorithm which is known to solve layered network design problems effectively. To show the performance of the proposed algorithm, computational experiments have been done and the results show that the proposed algorithm solves the given problem efficiently and effectively.

지상운송체의 풍동시험을 위한 지면재현의 연구 (Experimental Studies on Various Ground Simulations for a Wind Tunnel Test of Road Vehicles)

  • 권혁빈;이동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.605-610
    • /
    • 2000
  • A series of wind tunnel test were conducted on Korean high speed train model to understand the flow physics around the vehicle related to the aerodynamic drag. For the wind tunnel test on high-speed ground vehicle, a moving ground simulation is necessary to predict the aerodynamic drag accurately. So, the models were tested in three wind tunnels with various ground simulation facility including moving belt ground plane system and tangential blowing system. The test results including measured aerodynamic drag and flow visualization showed that a tangential blowing method can be an alternative ground simulation method in short time using conventional wind tunnel.

  • PDF

Development of an active gust generation mechanism on a wind tunnel for wind engineering and industrial aerodynamics applications

  • Haan, Fred L. Jr.;Sarkar, Partha P.;Spencer-Berger, Nicholas J.
    • Wind and Structures
    • /
    • 제9권5호
    • /
    • pp.369-386
    • /
    • 2006
  • A combination Aerodynamic/Atmospheric Boundary Layer (AABL) Wind and Gust Tunnel with a unique active gust generation capability has been developed for wind engineering and industrial aerodynamics applications. This facility is a cornerstone component of the Wind Simulation and Testing (WiST) Laboratory of the Department of Aerospace Engineering at Iowa State University (ISU). The AABL Wind and Gust tunnel is primarily a closed-circuit tunnel that can be also operated in open-return mode. It is designed to accommodate two test sections ($2.44m{\times}1.83m$ and $2.44m{\times}2.21m$) with a maximum wind speed capability of 53 m/s. The gust generator is capable of producing non-stationary gust magnitudes around 27% of the mean flow speed. This paper describes the motivation for developing this gust generator and the work related to its design and testing.

전력구 터널의 배수 안정성에 관한 연구 (A Study on Drainage Stability of Cable Tunnel)

  • 지현석;박준모;장연수;박정순
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.687-694
    • /
    • 2002
  • This paper presents the results of 3-D analysis on steady state flow in the region where the leakage in a cable tunnel is occurred due to high excess ground water pressure. In numerical modeling, a relief well is selected as a method of reduction in water pressure at the surrounding region of the cable tunnel. The distribution of ground water level after dewatering by relief wells is analyzed, Results show that the amount of dewatering level in the layer of hard rock is about 4.2∼8.6m, and that in the layer of fracture zone is about 5.8∼8.2m. The predicted settlement at the cable tunnel due to the increase of effective stress by dewatering is 0.3mm.

  • PDF

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.

Updates to the wind tunnel method for determining design loads in ASCE 49-21

  • Gregory A. Kopp
    • Wind and Structures
    • /
    • 제37권2호
    • /
    • pp.163-178
    • /
    • 2023
  • The paper reviews and discusses the substantive changes to the ASCE 49-21 Standard, Wind Tunnel Testing for Buildings and Other Structures. The most significant changes are the requirements for wind field simulations that utilize (i) partial turbulence simulations, (ii) partial model simulations for the flow around building Appurtenances, along with requirements for determining wind loads on products that are used at multiple sites in various configurations. These modifications tend to have the effect of easing the precise scaling requirements for flow simulations because it is not generally possible to construct accurate models for small elements placed, for example, on large buildings at the scales typically available in boundary layer wind tunnels. Additional discussion is provided on changes to the Standard with respect to measurement accuracy and data acquisition parameters, such as duration of tests, which are also related to scaling requirements. Finally, research needs with respect to aerodynamic mechanisms are proposed, with the goal of improving the understanding of the role of turbulence on separated-reattaching flows on building surfaces in order to continue to improve the wind tunnel method for determining design wind loads.

터널 설계시 지하수의 고려방안 (Groundwater Considerations in Tunnel Design)

  • 이인모;김용진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1993년도 봄 학술회 논문집
    • /
    • pp.1-8
    • /
    • 1993
  • This paper concerns the analytical concept of tunnel design for the case where the groundwater level remains almost to a standstill even though the steady state groundwater flow occurs through tunnel drainage systems. The effect of the seepage force is considered in analysis. Two case strudies are made : the one the round shape tunnel ; the other the horse shape. The design moments, shear forces and axial forces are calculated and these results are compared to the case of water proof tunnel design as well as the case of the tunnel design without groundwater consideration.

  • PDF

매립지반 지하공동구의 수평이동원인에 대한 수치해석적 분석 (Numerical Analysis of Utility Tunnel Movement under Reclamation Ground)

  • 윤우현;황철성
    • 한국안전학회지
    • /
    • 제28권5호
    • /
    • pp.35-40
    • /
    • 2013
  • Recently reclamation land is largely developed to utilize the land according to economic growth. The soil of landfill is soft, low shear strength, which makes it difficult to use the equipment. A large movement is occurred on the utility tunnel under construction. The inclined land with high water level and underground facilities are widely distributed and the excess pore water pressure may occur under construction similarly to this study. Some different conditions are made to design result, such as 4m of soil piling near the construction area, heavy rainfall during 2nd excavation that may cause flow liquefaction. To analyze the cause of transverse lateral movement, Three dimensional analysis are performed to four load cases, which is original design condition, flow liquefaction by heavy rainfall, unsymmetric lateral soil pressure, and both of them simultaneously. Ten steps of full construction stage, 1st excavation for utility tunnel, construction of utility tunnel, 1st refill, piling soil from 1m to 4 m, 2nd excavation for drainage culvert, liquefaction around the utility tunnel, construction of drainage culvert and 2nd refill, are take into account to investigate the cause of movement.

다중터널의 통합환기제어 알고리즘 연구 (A Study on the Integrated Ventilation Control Algorithm for Road Tunnels)

  • 김태형;홍대희;주백석;김동남;금재성;김진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.405-409
    • /
    • 2008
  • Over 70% of the land is mountains in Korea, so that many roadways naturally includes tunnels. The air flow inside tunnel has complex characteristics, such that a new flow field is formed by following vehicles passing through the tunnel before previous flow field is stabilized. Due to these time delayed-transient characteristics, the ventilation facility requires the complex control algorithm that can handle adaptive and predictive controls. Also, it needs to be closely related to the disaster prevention system. The technology to integrate these system determines the success of TGMS. The pollutant levels exhausted from the vehicles passing through tunnel depend on vehicle years and passing velocity. They also depend on the slope and altitude of the tunnel. In order to solve this problem, an algorithm for estimating the compensating factors for calculating on design capacity of ventilation facilities was developed. Also, an integrated ventilation control algorithm with disaster prevention program to operate several tunnels was developed based on TGMS.

  • PDF