• 제목/요약/키워드: Tunnel fires

검색결과 97건 처리시간 0.026초

도로터널 화재시 효과적인 소방활동전략 수립을 위한 시나리오 연구 (Scenarios for Effective Fire Fighting Operations during Tunnel Fires)

  • 김학근;이지희
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.107-116
    • /
    • 2017
  • 터널화재는 국제적인 관심사이며, 매년 중대 터널화재는 발생하고 있다. 교통밀도가 증가하면서 장대터널은 물론, 더 많은 수의 터널이 건설되고 있어서, 앞으로 터널화재의 잠재위험성이 더 나빠질 수 있으므로 더욱더 심각한 문제이다. 도로터널 화재발생시 소방대원이 효과적인 소방활동 전략을 수립하도록 하는 것이 본 연구의 궁극적 목적이다. 과거 화재 사례로부터 어떠한 사고가 발생하였고, 어떠한 소방활동이 행해졌는지 알아보기 위하여 국내외 73건의 터널화재사고사례를 조사하여 4가지 사고유형으로 분류하였다. 소방활동의 전략수립을 위해 개입시간과 열방출율의 관계로 6가지 화재시나리오 곡선을 도출하였다. 이것은 두 가지 기준 즉, 반응한계와 최대 도착시간에 따라 소방활동의 전략을 수비적, 공격적 전략 중 선택할 수 있도록 하였다. 도로터널 분류 모델은 각 소방기관이 관할 터널의 화재 위험 정도를 화재 진압의 관점에서 평가하고 예방조치를 수립하는데 사용될 수 있다.

존 모델을 이용한 종류식 배연 터널 화재시 연기 거동에 대한 수치해석적 연구 (A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires Using a Zone Model)

  • 김현정;노재성;김동현;장용준;유홍선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1319-1324
    • /
    • 2007
  • Many researches have been performed to analyze the smoke movement in tunnel fires by using field model. Recently, FDS(Fire Dynamics Simulator) v.4, which is one of the field model and developed from NIST(National Institute of Standards and Technology), is widely used. In tunnel fires, FDS can show detail results in local point, but it has difficulties in boundary condition and taking long computing time as the number of grid increases. So, there is a need to use alternative method for tunnel fire simulation. A zone model is different kind of CFD method and solves ordinary differential equation based on conservation and auxiliary equations. It shows good macroscopic view in less computing time compared to field model. In this study, therefore, to confirm the applicability of CFAST in tunnel fire analysis, numerical simulations using CFAST are conducted to analyze smoke movement in longitudinal ventilation reduced-scale tunnel fires. Then the results are compared with experimental results. The differences of temperature and critical velocity between numerical results and experimental data are over $30^{\circ}C$ and 0.9m/s, respectively. These values are out of error range. It shows that CFAST 6.0 is hard to be used for tunnel fire simulation.

  • PDF

철도터널에서의 화재시 발생되는 연기 온도/발생량 계산 (Calculation of Smoke Temperature/Volume Folw rate in Tunnel Fires)

  • 박원희;장용준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1218-1222
    • /
    • 2007
  • Under various tunnel fires, smoke average temperature and volume flow rate in a tunnel fire are calculated. To obtain realistic results, enthalpy of smoke which composites combustion gases and entrainment air is calculated from curvefit polynomials by temperature.

  • PDF

터널화재시 환기방식에 따른 연기거동에 관한 실험적 연구 (An Experimental Study of Smoke Movement in Tunnel Fires According to Ventilation Method)

  • 이성룡;정진용;김충익;유홍선
    • 설비공학논문집
    • /
    • 제14권9호
    • /
    • pp.691-698
    • /
    • 2002
  • In this study, reduced-scale experiments were conducted to analyze smoke movement in tunnel fires according to vepntilation method. The 1/20 scale experiments were carried out under the Froude scaling using gasoline pool fires ranging from 6.6 to 10 cm in diameter corresponding to total heat release rate from 0.714 to 2.5 kW. Temperatures near the ceiling were lowered by installing the vent, and much lowered by operating fan compared wiht tile case without vent. In case of forced ventilation, the exhaust fan was more effective than the intake fan. Vertical temperatures at the upper part of the tunnel were also lowered by installing the vent. But, when suction fan was operated, temperatures at the lower part of the tunnel were higher than that without vent.

터널 화재시 터널 단면의 종횡비에 따른 연기 거동에 관한 (An Experimental Study of Smoke Movement in Tunnel Fires with Aspect Ratio of Tunnel Cross Section)

  • 이성룡;유홍선;김충익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.115-120
    • /
    • 2003
  • In this study, smoke movement in tunnel fires was investigated with various aspect ratio(0.5, 0.667, 1.0, 1.5, 2.0) of tunnel cross section. Reduced-scale experiments were carried out under the Froude scaling using 8.27 kW ethanol pool fire. Temperatures were measured under the ceiling and vertical direction along the center of the tunnel. Smoke front velocity and temperature decrease rate were reduced as higher aspect ratio of the tunnel cross-section. Smoke movement was evaluated by analysis of vertical temperature distribution 3 m downstream from the fire source. Elevation of smoke interface according to N percent rule was under about 60% of tunnel height.

  • PDF

강제환기 통풍구가 설치된 철도터널 열차화재에서 연기거동에 관한 수치해석적 연구 (Numerical study for smoke behavior in case of train fires in railway tunnel with axial fan vents)

  • 김동현;신민호;문정주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1998-2004
    • /
    • 2003
  • Numerical study were performed to analyze for fire safety in railway tunnel with forced ventilation vents. For the condition of train fires with heat release rate of 30 MW, unsteady three dimensional analysis were carried out to investigate the effects of smoke movements, the heat transfer and $CO_2$ concentrations and in double track tunnel with two vents. Among three operation modes of forced ventilations at two vents, the exhaust-exhaust mode of the vent represents the best performance for the evacuation of passengers to avoid the fire.

  • PDF

도로터널 저압 물분무설비 화재진압 실험 (Fire Suppression Experiment for Road Tunnel Low Pressure Water Spray Systems)

  • 최병일;한용식;김명배;소수현
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.218-221
    • /
    • 2008
  • The real scale fire suppression test inside a road tunnel were carried out for water spray systems. The dimension of the tunnel is 7.5m in height and 11.6m in width. 3 different water spray nozzle systems with low operating pressure less than 3.5 bar were used in the experiment. Two types of fires were tested. One is a $1.4m^2$ heptane pool fire and the other is a 2000CC passenger car fire. From the experiment, the spray densities of tested systems were about $6.0\;l/min/m^2$ which is currunt domestic guideline. Although all the systems cannot extinguish the tested fires, it was found that they can reduce the tunnel temperature and have a capability to control and suppress the tested fire.

  • PDF

수직갱이 설치된 터널내 화재시 연기거동에 관한 실험적 연구 (An Experimental Study of Smoke Movement in Tunnel Fires with a Vertical Shaft)

  • 이성룡;유홍선;김충익
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.135-141
    • /
    • 2004
  • The present paper concerns a smoke movement in a tunnel fire with a vertical shaft. The model tunnel measured 13.4m long, 0.4m wide and 0.4m high. The cross section is 1: 20 of a full scale tunnel. Ethanol was used as a fuel. The fire size in model tests varied from 1.35 kW to 13.37 kW, which corresponds to full scale fires of 2.41 to 23.91 MW. Smoke front velocity and temperatrue were decreased due to the vertical shaft install. Temperature was reduced maximum about 2$0^{\circ}C$ at ceiling and about 23$^{\circ}C$ at vertical position. CO concentration was reduced as the vent width widened. When vent width was more than 15 cm, CO concentration was not reached 100 ppm. Descent degree of the smoke layer was confirmed through the visualization.

종류식 배연 터널 화재시 배연속도가 연소율에 미치는 영향에 대한 실험적 연구 (An Experimental Study on the Effect of Ventilation Velocity on the Burning Rate in Longitudinal Ventilation Tunnel Fires)

  • 양승신;유흥선;최영기;김동현
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.914-921
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiment using Froude scaling were conducted to investigate the effect of longitudinal ventilation velocity on the burning rate in tunnel fires. The methanol pool fires with heat release rate ranging from 2.02 kW to 6.15 kW and the n-heptane pool fires with heat release rate ranging from 2.23 kW to 15.6 kW were used. The burning rate of fuel was obtained by measuring the fuel mass at the load cell. The temperature distributions were observed by K-type thermocouples in order to investigate smoke movement. The ventilation velocity in the tested tunnel was controlled by inverter of the wind tunnel. In methanol pool fire, the increase in ventilation velocity reduces the burning rate. On the contrary in n-heptane pool fire, the increase in ventilation velocity induces large burning rate. The reason for above conflicting phenomena lies on the difference of burning rate. In methanol pool fire, the cooling effect outweighs the supply effect of oxygen to fire plume, and in n-heptane pool vice versa.

터널 화재시 종류식 환기가 연소율 변화에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Longitudinal Ventilation on the Variation of Burning Rate in Tunnel Fires)

  • 양승신;김성찬;유홍선
    • 터널과지하공간
    • /
    • 제15권1호
    • /
    • pp.55-60
    • /
    • 2005
  • 본 연구는 터널내 화재 발생시 종류식 환기가 연소율 변화에 미치는 영향을 파악하기 위하여 Froude scaling에 의해 1/20크기로 축소한 모형화재 실험을 수행하였다. 화원으로는 $8.5cm{\sim}14.5cm$의 메탄올을 사용하였으며 발열량은 $3.57{\sim}10.95kW$이다. 연소율은 로드셀을 이용하여 산출하였고, 연기거동을 파악하기 위하여 K형 열전대를 이용하여 온도분포를 측정하였다. 풍동은 터널의 한쪽부분과 연결하였고, 터널 공간의 배연속도를 제어하기 위하여 풍동의 전압을 조절하였다. 메탄올 화재인 경우 배연속도가 증가할수록 냉각효과로 인하여 연소율은 감소하였으며, 또한 같은 무차원속도(V)일때 화원 크기가 커짐에 따라 연소율은 감소하였다.