• Title/Summary/Keyword: Tunnel filed-effect transistor (TFET)

Search Result 2, Processing Time 0.021 seconds

A Recessed-channel Tunnel Field-Effect Transistor (RTFET) with the Asymmetric Source and Drain

  • Kwon, Hui Tae;Kim, Sang Wan;Lee, Won Joo;Wee, Dae Hoon;Kim, Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.635-640
    • /
    • 2016
  • Tunnel field-effect transistor (TFET) is a promising candidate for the next-generation electron device. However, technical issues remain for their practical application: poor current drivability, shor-tchannel effect and ambipolar behavior. We propose herein a novel recessed-channel TFET (RTFET) with the asymmetric source and drain. The specific design parameters are determined by technology computer-aided design (TCAD) simulation for high on-current and low S. The designed RTFET provides ${\sim}446{\times}$ higher on-current than a conventional planar TFET. And, its average value of the S is 63 mV/dec.

Compact Capacitance Model of L-Shape Tunnel Field-Effect Transistors for Circuit Simulation

  • Yu, Yun Seop;Najam, Faraz
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.263-268
    • /
    • 2021
  • Although the compact capacitance model of point tunneling types of tunneling field-effect transistors (TFET) has been proposed, those of line tunneling types of TFETs have not been reported. In this study, a compact capacitance model of an L-shaped TFET (LTFET), a line tunneling type of TFET, is proposed using the previously developed surface potentials and current models of P- and L-type LTFETs. The Verilog-A LTFET model for simulation program with integrated circuit emphasis (SPICE) was also developed to verify the validation of the compact LTFET model including the capacitance model. The SPICE simulation results using the Verilog-A LTFET were compared to those obtained using a technology computer-aided-design (TCAD) device simulator. The current-voltage characteristics and capacitance-voltage characteristics of N and P-LTFETs were consistent for all operational bias. The voltage transfer characteristics and transient response of the inverter circuit comprising N and P-LTFETs in series were verified with the TCAD mixed-mode simulation results.