• Title/Summary/Keyword: Tunnel deformation

Search Result 462, Processing Time 0.023 seconds

The DFN-DEM Approach Applied to Investigate the Effects of Stress on Mechanical and Hydraulic Rock Mass Properties at Forsmark, Sweden (암반균열망-개별요소법 수치실험을 통해 살펴본 스웨덴 포쉬마크지역 암반의 역학적 및 수리적 물성에 초기응력이 미치는 영향)

  • Min, K.B.;Stephansson, O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2011
  • The purpose of this study is to demonstrate the effect of in-situ rock stresses on the deformability and permeability of fractured rocks. Geological data were taken from the site investigation at Forsmark, Sweden, conducted by Swedish Nuclear Fuel and Waste Man-agement Company (SKB). A set of numerical experiments was conducted to determine the equivalent mechanical properties (essentially, elastic moduli and Poisson's ratio) and permeability, using a Discrete Fracture Network-Discrete Element Method (DFN-DEM) approach. The results show that both mechanical properties and permeability are highly dependent on stress because of the hyperbolic nature of the stiffness of fractures, different closure behavior of fractures, and change of fluid pathways caused by deformation. This study shows that proper characterization and consideration of in-situ stress are important not only for boundary conditions of a selected site but also for the understanding of the mechanical and hydraulic behavior of fractured rocks.

Non-Linear Deformation Analysis of NATM Tunnel using Artificial Neural Network and Computational Methods (인공신경망과 수치해석을 이용한 NATM터널의 비선형 거동 분석)

  • Lee, Jae-Ho;Kim, Young-Su;Akutagawa, Shinich;Moon, Hong-Duk;Jeon, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.59-70
    • /
    • 2008
  • 도심지 터널의 설계, 시공 그리고 유지관리에 있어서 지반 변위 억제와 변형거동 예측은 중요하다. 국내 외 연구자들은 다양한 수치해석적인 기법과 현장 계측 결과를 이용하여 터널 시공과 관련된 변형거동 예측을 시도하였다. 하지만, 설계물성치의 산정과 지반 모델링 그리고 수치해석기법과 관련된 사용상의 어려움에 의해 아직까지 만족스러운 결과를 얻지는 못하였다. 본 논문은 수치해석적인 기법과 인공신경망을 이용하여 도심지 NATM 터널의 설계 물성치 산정과 변형거동 예측에 관한 방법을 제안하였다. 인공신경망 모델 개발을 위한 학습과 테스트과정은 데이터베이스된 수치해석결과를 이용하였다. 개발된 인공신경망 모델은 입력변수인 지반변위와 결과변수인 설계 물성치 간의 상호관계를 적절히 인식할 수 있다. 수치해석은 지반의 연화거동을 모사할 수 있는 변형률 연화모델을 적용하였다. 사례분석에 있어서 굴착 초기단계의 계측 값을 개발된 인공신경망 모델에 입력하여 설계 물성치를 계산하였으며, 수정된 설계 물성치는 수치해석을 통하여 다음 굴착단계에서의 터널 주변의 지반 변형거동을 예측하였다. 본 논문에서 제안된 방법을 토대로 시공조건이 엄밀한 도심지 터널의 설계물성치의 정량적인 평가 및 변형거동 예측이 계측이 입수된 초기 굴착단계에서 가능할 것으로 기대된다.

  • PDF

Measurement of compressive and tensile strain in concrete structure with FBG sensor fixture (광섬유격자센서의 콘크리트구조물에의 고정과 압축 및 인장 변형의 측정)

  • Kim, Ki-Soo;Kim, Young-Jin;Moon, Dae-Jung;Kim, Seong-Woon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.149-152
    • /
    • 2008
  • FBG sensor system is applied to the concrete lining structure in Taegu subway. Near the structure, the power cable tunnel construction started. We wanted to measure the deformation of the structure due to the construction by the FBG sensor. The applied sensor has the gauge length of 1 meter to overcome the inhomogeneity of the concrete material with enough length. In order to fix tightly to the structure, the partially stripped parts of the sensor glued to the package and slip phenomenon between fiber and acrylate jacket was prevented. Prestrain of the sensor was imposed by controlling the two fixed points with bolts and nuts in order to measure compressive strain as well as tensile strain. The behavior of subway lining structure could be monitored very well

  • PDF

Deformation Characteristics of Construction Joint of Paved Track on Earthwork Section using the Accelerated Track Test (궤도가속실험을 통한 포장궤도 토공구간 시공이음매부의 변형특성 연구)

  • Lee, Il-Wha;Jang, Seung-Yup;Kang, Yoon-Suk;Um, Ju-Hwan;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.521-527
    • /
    • 2010
  • The Paved Track is applied to reduce maintenance cost of conventional line. The Paved Track could be used in all types of lines including earthwork, bridge, tunnel and turnout sections. In case of earthwork section, the construction joint is the most critical factor to track durability. The construction joint does not affect to the track structure directly, but the gap due to discontinuity of slabs may affect to the long-term serviceability. To evaluate this problem, the accelerated track test has been performed on the construction joint and the middle part to of the real scale Paved Track. The purpose of this test is that evaluate the vulnerability of construction joint section comparing the trends of settlement and earth pressure under repeated loads of construction joint with those of the middle slab part.

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.

A Study on Strength Properties of Soil Cement Specimen using Processed Recycle Resources as Cement Admixtures (가공된 순환자원을 시멘트 혼화재로 활용한 흙 시멘트 공시체의 강도 특성에 관한 연구)

  • Choi, Woo-Seok;Ha, Eun-Ryong;Kim, Eun-Sup;Jung, Seung-Hwan
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.312-323
    • /
    • 2017
  • In this study, an influence of mixing ratio among firing oyster shell, non-firing oyster shell, magnetic separated converter steel slag and fly ash used as admixtures on strength properties of soil cement was evaluated by correlation analysis among compressive strength, deformation modulus and mixing ratio of admixtures. As a result, the strength of the specimens containing non-firing oyster shells was found to be larger than that of firing oyster shells, and it was confirmed that firing oyster shells could negatively affect the strength of soil cement specimens unlike previous studies. In addtion, there was a positive correlation between the ratio of magnetic separated converter slag and strength properties, so it is confirmed that it can be used as an admixture.

Study on the Geological Characteristics and Slope Stability of Nammyeon reservoir in Bonghwa County, Kyungpook Province (경북 봉화군 남면저수지 일대의 지질특성 및 비탈면 안정성 검토)

  • Ihm, Myeong Hyeok;Park, Jin Young
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.77-88
    • /
    • 2017
  • The geology of the study area is composed mainly of conglomerate, sandstone, and shale and basalt. It is a rock that has been observed to move relatively recently through various brittle deformation and various stress fields during the recent period. To form a gentle terrain with severe crushing. The slope is located at the intersection of the Taegok Fault in the north-northeast direction and the Bukok Fault in the western north-west direction, and many faults, fault zones and fracture zones of various sizes are developed in the rock bed. In this study, the geological characteristics of the slope are investigated and the countermeasure method is suggested. It is suggested that periodical measurement and analysis should be performed by installing a measuring instrument according to each structure for safety management of the surrounding roads and grounds during construction or reinforcement by the countermeasure method for the slope of the study area.

Wake effects of an upstream bridge on aerodynamic characteristics of a downstream bridge

  • Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.417-430
    • /
    • 2019
  • To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.

Study on Subsurface Collapse of Road Surface and Cavity Search in Urban Area (도심지 노면하부 지반함몰 및 공동탐사 사례 연구)

  • Chae, Hwi-Young
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.387-392
    • /
    • 2017
  • Recently, road cave-ins, also referred to as ground sinking, have become a problem in urban environments. Public utility facilities such as sewage pipelines, communications pipes, gas pipes, power cables, and other types of underground structures are installed below the roads. It was reported that cave-ins are caused by the aging and lack of proper maintenance of underground facilities, as well as by construction problems. A road cave-in is first initiated by the formation of cavities typically induced by the breakage of underground pipelines. The cavities then grow and reach the base of the pavement. The traffic load applied at the surface of the roads causes an abrupt plastic deformation. This type of accident can be considered as a type of disaster. A road cave-in can threaten both human safety and the economy. It may even result in the loss of human life. In the city of Seoul, efforts to prevent damage before cave-ins occur have been prioritized, through a method of discovering and repairing joints through the 3D GPR survey.

Numerical Evaluation of the Influence of Joint Roughness on the Deformation Behavior of Jointed Rock Masses (절리면의 거칠기 특성이 정리암반의 거동에 미치는 영향에 대한 수치해석적 연구)

  • 이연규
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.225-236
    • /
    • 2001
  • The roughness of rock joint is one of the most important parameters in developing the shear resistance and the tendency of dilation. Due to the damage accumulated with shearing displacement, the roughness angle is lowered continuously. It is known that dilation, shear strength hardening, and softening are directly related to the degradation of asperities. Much effort has been directed to incorporate the complicated damage mechanism of asperities into a constitutive model fur rock joints. This study presents an elasto-plastic formulation of joint behavior including elastic deformability, dilatancy and asperity surface damage. It is postulated that the plastic portion of incremental displacement 7an be decomposed into contributions from both sliding along the asperity surface and damage of asperity. Numerical cyclic shear tests are presented to illustrate th? performance of the derived incremental stress-displacement relation. A laboratory cyclic shear test is also simulated. Numerical examples reveal that the elasto-plastic joints model is promising.

  • PDF