• Title/Summary/Keyword: Tunnel deformation

Search Result 464, Processing Time 0.02 seconds

Analysis of correlation between shield TBM construction field data and settlement measurement data (쉴드 TBM 시공데이터와 지반침하 계측데이터 간 상관성 분석)

  • Jung, Ye-Rim;Nam, Kyoung-Min;Kim, Han-Eol;Ha, Sang-Gui;Yun, Ji-Seok;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.79-94
    • /
    • 2022
  • The demand for tunnel construction is increasing as part of underground space development due to urban saturation. The shield TBM method minimizes vibration and noise and minimizes ground deformation that occurs simultaneously with excavation, and shield TBM is generally applied to tunnel construction in urban areas. The importance of urban ground settlement prediction is increasing day by day, and in the case of shield TBM construction, ground deformation is minimized, but ground settlement due to tunnel excavation inevitably occurs. Therefore, in this study, the correlation between shield TBM, which is highly applicable to urban areas, and ground settlement is analyzed to suggest the shield TBM construction factors that have a major effect on ground settlement. Correlation analysis was performed between the shield TBM construction data and ground settlement measurement data collected at the actual site, and the degree of correlation was expressed as a correlation coefficient "r". As a result, the main construction factors of shield TBM affecting ground settlement were thrust force, torque, chamber pressure, backfill pressure and muck discharge. Based on the results of this study, it is expected to contribute to the presentation of judgment criteria for major construction data so that the ground settlement can be predicted and controlled in advance when operating the shield TBM in the future.

Finite Element Analysis of Thermal Deformations for Microaccelerometer Sensors using SOI Wafers (SOI웨이퍼의 마이크로가속도계 센서에 대한 열변형 유한요소해석)

  • 김옥삼;구본권;김일수;김인권;박우철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.12-18
    • /
    • 2002
  • Silicon on insulator(SOI) wafer is used in a variety of microsensor applications in which thermal deformations and other mechanical effects may dominate device Performance. One of major Problems associated with the manufacturing Processes of the microaccelerometer based on the tunneling current concept is thermal deformations and thermal stresses. This paper deals with finite element analysis(FEA) of residual thermal deformations causing popping up, which are induced in micrormaching processes of a microaccelerometer. The reason for this Popping up phenomenon in manufacturing processes of microaccelerometer may be the bending of the whole wafer or it may come from the way the underetching occurs. We want to seek after the real cause of this popping up phenomenon and diminish this by changing manufacturing processes of mic개accelerometer. In microaccelerometer manufacturing process, this paper intend to find thermal deformation change of the temperature distribution by tunnel gap and additional beams. The thermal behaviors analysis intend to use ANSYS V5.5.3.

A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks (암석의 강도 및 변형거동의 온도의존성에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

Mechanical Properties of Fault Rocks in Korea

  • Seo, Yong-Seok;Yun, Hyun-Seok;Ban, Jae-Doo;Lee, Chung-Ki
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.571-581
    • /
    • 2016
  • To understand the mechanical properties of fault rocks, data from 584 in situ and laboratory tests on fault rocks from 33 tunnels were analyzed. The unit weights of the fault rocks range from 17.3 to $28.2kN/m^3$ and the cohesion and friction angles vary from 5 to 260 kPa and $14.7^{\circ}$ to $44.0^{\circ}$, respectively. The modulus of deformation and elasticity were generally < 200 MPa. In most cases, the uniaxial compressive strength was < 0.5 MPa, and Poisson's ratios were mainly 0.20-0.35. The mechanical properties of individual rock types were analyzed using box plots, revealing that the cohesion values and friction angles of shale and phyllite have relatively wide inter-quartile ranges and that the modulus of deformation and elasticity of shale have the lowest values of all rock types. In the analysis of mechanical properties by components of fault rocks, the largest values were shown in damage zones of individual rock types.

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Numerical Simulation for Characteristics of Rock Strength and Deformation Using Grain-Based Distinct Element Model (입자 기반 개별요소모델을 통한 암석의 강도 및 변형 특성 모사)

  • Park, Jung-Wook;Lee, Yun-Su;Park, Chan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.243-254
    • /
    • 2014
  • The present study introduces a numerical technique to simulate the mechanical behavior of brittle rock, based on a grain-based model combined with Universal Distinct Element Code (GBM-UDEC). Using the technique, the microstructure of rock sample was represented as an assembly of deformable polygonal grains, and the failure process with the evolution of micro tensile cracks under compression was examined. In terms of the characteristics of strength and deformation, the behaviors of the simulated model showed good agreement with the observations in the laboratory-scale experiments of rock.

KFLOW Results of Airloads on HART-II Rotor Blades with Prescribed Blade Deformation

  • Sa, Jeong-Hwan;Kim, Jee-Woong;Park, Soo-Hyung;Park, Jae-Sang;Jung, Sung-Nam;Yu, Yung-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.52-62
    • /
    • 2009
  • A three-dimensional compressible Navier-Stokes solver, KFLOW, using overlapped grids has recently been developed to simulate unsteady flow phenomena over helicopter rotor blades. The blade-vortex interaction is predicted for a descending flight using measured blade deformation data. The effects of computational grid resolution and azimuth angle increments on airloads were examined, and computed airloads and vortex trajectories were compared with HART-II wind tunnel data. The current method predicts the BVI phenomena of blade airloads reasonably well. It is found from the present study that a peculiar distribution of vorticity of tip vortices in an approximate azimuth angle range of 90 to 180 degrees can be explained by physics of the shear-layer interaction as well as the dissipation of numerical schemes.

Effects of the Thermal Cracking on the Deformation Behaviour of Granites (열균열이 화강암의 변형거동에 미치는 영향)

    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.249-256
    • /
    • 1998
  • Pocheon, Keochang and Sangju granite samples of different granularity and mineralogical composition were thermally treated at pre-determined temperature of $600^{\circ}C$. Thermally-induced microcracks were characterized using an optical microscopy and their effects on the deformation behavior of thermally cycled samples were studied performing compressive mechanical tests. Optical observations shows that by $600^{\circ}C$ nearlly all crystal boundaries open and the new intracrystalline cracks form in the more grains. The intracrystalline cracks are most pronounced at thermally treated Pocheon and Keochang granite samples. Results from mechanical tests represents negative lateral strains, which give negative Poisson's ratios. It is the most probable that negative lateral strains are produced by residual stresses induced during cooling.

  • PDF

Creep Behavior of Unconsolidated Rock with Mathematical Concept Solution (수학적 개념 해를 적용한 미고결 암석의 Creep거동 해석)

  • Jang, Myoung-Hwan
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.25-37
    • /
    • 2018
  • Burger's model was used to analyze creep characteristics of unconsolidated rock. Burger's model should determine four physical parameters from two pairs of data. In this study, physical parameters of Burger's model were determined by applying mathematical concept solution. Creep was accelerated for three years using the determined physical parameters of the Burger's model for unconsolidated rocks. As a result, the creep behavior showed a continuous deformation behavior without convergence. Therefore, in this mine, it is analyzed that the application of U-Beam is more appropriate than roofbolt in terms of stability.

A set of failure variables for analyzing stability of slopes and tunnels

  • Kim, Jun-Mo;Lee, Sungho;Park, Jai-Yong;Kihm, Jung-Hwi;Park, Sangho
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.175-189
    • /
    • 2020
  • A set of relatively simple five local shear and tension failure variables is presented and then implemented into a generalized poroelastic hydromechanical numerical model to analyze failure potential and stability of variably saturated geologic media. These five local shear and tension failure variables are formulated from geometrical relationships between the Mohr circle and the Mohr-Coulomb failure criterion superimposed with the tension cutoff, which approximate together the Mohr effective stress failure envelope. Finally, fully coupled groundwater flow and land deformation in two variably saturated geologic media, which are associated with a slope (Case 1) and a tunnel (Case 2), respectively, and their failure potential and stability are simulated using the resultant hydromechanical numerical model. The numerical simulation results of both cases show that shear and tension failure potential and stability of variably saturated geologic media can be analyzed numerically simply and efficiently and even better by using the five local shear and tension failure variables as a set than by using the conventional factors of safety against shear and tension failures only.