• Title/Summary/Keyword: Tunnel deformation

Search Result 469, Processing Time 0.026 seconds

Analysis of the Stability and Behavior of a Calcareous Rock Slope During Construction of a Tunnel Entrance (터널출입구 시공에 따른 석회암 사면의 안정성 및 거동 분석)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.283-292
    • /
    • 2013
  • A calcareous rock slope failed during excavation of the slope for construction of a tunnel entrance. The slope is located at the construction site for widening highway in Yeongwol, Korea. Field surveys, laboratory tests, and numerical analyses were performed to determine the reason for the slope failure. The numerical analysis revealed that the safety factor of the slope before construction of the entrance was less than 1, and that this decreased after construction. After construction of the entrance, the sliding zone of the slope increased and slope stability decreased because the shear strain and plastic zone in the slope over the tunnel entrance showed an increase relative to the lower part of the slope. To enhance the stability of the slope for construction of the tunnel entrance, countermeasures such as rock bolts, rock anchors, and FRP (Fiber glass Reinforced Plastic) grouting were adopted in light of the field conditions. Serial field monitoring performed to confirm the reinforcing effects of the adopted countermeasures revealed a small amount of horizontal deformation of the slope soils, most of the elastic deformation that can regain its former value. In addition, the axial forces of the rock bolt and anchor were more strongly affected by slope excavation during construction of the tunnel entrance than by tunnel excavation or the rainy season, and the axial forces tended to converge after excavation of the tunnel. Therefore, we can confirm that the slope is currently safe.

특정 사례터널 해석 결과 및 평가

  • 이두화
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.195-215
    • /
    • 1991
  • This report deals with the process of the finite element computation and the design of the particular example tunnel (the double track section tunnel for Line 5, 7, 8 of Seoul Subway). The finite element calculations are performed with the program MISES 3 was developed from Austria which have been used in Eroupe. The principles of mechanic and mathematic analysis for the program MISES 3 are based on "The Finite Element Method -3rd Edition" by O.C zienkiewicz. The calculations are approximate analysis method divide continuum into quadrilateral element and calculate deformation and stress, according to the force equations at the node of the element. On the calculation of under excavation, this is a very convenient method and able to calculate compounded structure with tunnel lining and surrounding materials. Although calculated under the same factor and conditions, the result is not same solution, according to the shape of mesh. Therefore , it is important that we collect the construction results of NATM on the spot and by comparing the results of the finite element method with the surveying results review the validity of analysis model.sis model.

  • PDF

Analysis on the Reinforcement Effect for Large Type Sleeper on Transition zone between Earthwork and Tunnel (터널/토공 접속부에 대한 대형침목 보강효과 분석)

  • Lee, Jin-Wook;Choi, Chan-Yong;Lee, Il-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1279-1286
    • /
    • 2006
  • It is very important to pay careful attention to construction of earthwork/tunnel transition zone for railway. The transition zone of the railway is the section which roadbed stiffness is suddenly varied. Differences in stiffness have dynamic effects and these increase the forces in the track and the extent of deformation. In this study, performance of transition zone was investigated through the field tests. The wheel loads and sleeper settlement were measured after installing field testing sections.

  • PDF

Effects of Excavation Methods on Tunnel Deformation Behavior using Finite Element Analysis (굴착공법이 터널변위 거동에 미치는 영향-유한요소해석)

  • Yoo, Chung-Sik;Kim, Joo-Mi;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.199-207
    • /
    • 2006
  • Before getting to the actual study of the load distribution factor in various excavating methods, this research is preliminarily focused on the comparison of two different excavation methods, CD cut method and Ringcut method. Especially, the purpose of this research is to study the behavioral mechanism of two tunnels which share the same construction environment but different excavating method. Two numerical analysis models with the same tunnel section and material properties are compared in this study, and they are analyzed by 3D Finite Element Analysis. In each model, face stability, crown displacement, ground settlement, and shotcrete-lining stress are computed. Thus, the general behavior of CD cut method and Ringcut method are studied, and it certified what should be considered for the calculation of the load distribution factor.

  • PDF

Experimental study on the Variation of Stiffness Transition Zone between Earthwork and Tunnel (열차운행시 터널-토공접합부에서의 강성천이구간에 대한 실험적 연구)

  • Lee Jin-Wook;Choi Chan-Yong;Lee Il-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.726-733
    • /
    • 2005
  • It is very important to pay careful attention to construction of earthwork/tunnel transition zone for railway. The transition zone of the railway is the section which roadbed stiffness is suddenly varied. Differences in stiffness have dynamic effects and these increase the forces in the track and the extent of deformation. In this study, performance of transition zone was investigated through the field tests. The wheel loads and sleeper settlement were measured after installing field testing sections.

  • PDF

Estimation of Preceding Displacement at Tunnel Excavation by NATM (NATM 시공에 의한 터널 굴착시 선행변위 추정에 관한 연구)

  • 신동오;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.87-95
    • /
    • 1998
  • Field instrumentation and numerical analysis by the finite difference method were applied to estimate the relaxed zone in a subway tunnel of shallow depth in soft rock, excavated by NATM. The convergence and ground displacement can be used to estimate the deformation behavior and the relaxed zone. Parameters for the several models previously suggested were measured using regression analysis techniques adopting a function of time and the face advance. The estimated relaxed zone by the MPBX and FDM analysis were 1.5~3.0 m and 1.5~2.0 m, respectively. It was concluded that the visco-elastic model and the time-dependent elasto-plastic model correlate very well ($r^2$>0.9) with results of the numerical analyses.

  • PDF

An experimental study on the load transfer machanism of shallow 2-arch tunnel excavation sequence with vertical discontinuity planes in sandy ground (연직 불연속면이 존재하는 얕은 심도의 사질토 지반에서 2-arch 터널 단계별 굴착에 따른 하중전이에 관한 실험적연구)

  • Oh, Bum-Jin;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.215-231
    • /
    • 2011
  • In this study, the behavior of a shallow 2-arch tunnel during the excavation in the sandy ground containing vertical discontinuity plane was experimentally studied. Load transfer mechanism in the pillar caused by a 2-arch tunnel excavation was observed. The position of the vertical discontinuity plane was varied. Model tests were carried out in the normal construction sequence of 2-arch tunnel. Test results-showed that the load transfer caused by the 2-arch tunnel excavation was concentrated in the discontinuity plane, and was cut by the discontinuity plane, so no load transfer took place above the discontinuity plane. It was also shown that the effect of adjacent tunnel excavation on the pillar load and the ground deformation was greater when excavating the upper half-face of the main tunnel, more than when excavating the lower half-face.

Experimental Study on Load Transfer Characteristic by Adjacent Slope Excavation in a Jointed Rock Mass (절리암반에서 근접 사면굴착에 의한 하중전이특성에 대한 실험적 연구)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.321-328
    • /
    • 2009
  • A optimal reinforcement in the joint rock slope excavation adjacent to an existing tunnel would be influenced by excavation distance from the tunnel, slope angel, and joint conditions but has been empirically determined so far. In this study, large scale model tests were conducted to find out the relationship between load translation on the excavation surface and bebavior of the tunnel according to excavation steps of the jointed rock slope. Consequently, two main parameters, joint dip and sloped angle were investigated in those model tests. From the test results, it was found that tunnel deformation was the largest one when the excavation of joints located closer to the tunnel crown or invert. Stability of the slope and the tunnel were varied in a certain excavation stage related to the angle of slope. In the future, based on results of this study the reinforcement method for the tunnel and slope safety in a jointed rock mass will be demonstrated.

A Study on the Behavior of George Massey Immersed Tunnel during Earthquake (지진 시 George Massey 침매터널의 거동에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.221-230
    • /
    • 2008
  • The George Massey immersed tunnel passes the Fraser River near Vancouver, Western Canada. The tunnel was founded on sandy soils and its behavior during earthquake was analyzed by an effective stress constitutive model called UBCSAND. This model is able to calculate pore pressure rise and resulting tunnel movements due to cyclic loading. Centrifuge tests conducted at Rensselaer Polytechnic Institute (RPI) were used to verify the model performance. The centrifuge tests consisted of 2 models: Model 1 was designed for an original ground condition, Model 2 for a ground improvement by densification. In Model 1, large deformation of the tunnel was observed due to liquefaction of surrounding soil. Because of the densified zones around the tunnel the vertical and horizontal displacements of the tunnel in Model 2 was 50% less than Model 1. Measured excess pore pressures, accelerations, and displacements from centrifuge tests were in close agreement with the predictions of UBCSAND model. Therefore, the model can be used to predict seismic behavior of immersed tunnels on sandy soils and optimize liquefaction remediation methods.

Numerical investigation on 3D behavior of 2-Arch tunnel (2-Arch 터널의 3차원 거동 특성 - 수치해석 연구)

  • Yoo, Chung-Sik;Kim, Joo-Mi;Kim, Hee-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.255-264
    • /
    • 2009
  • This paper concerns the behavior of 2-Arch tunnel constructed under various conditions. A 2-Arch tunnel section adopted in a subway tunnel construction site is considered in this study. A calibrated 3D finite element model was adopted to conduct parametric studies on a variety of construction scenarios including lagged distance between left and right tunnels, overburden, and geological condition. The results of analyses were examined in terms of crown settlement, shotcrete lining stress, and load on center column in relation to the lagged distance, cover depth, and the ground condition. The results indicate that the shotcrete lining stress and the center pillar load are more influenced by the second tunnel excavation than the tunnel deformation. Also shown is that a greater lagged distance is required to minimize the interaction between two tunnels when the ground condition becomes weaker. Fundamental mechanisms of 2-arch tunnel were also discussed based on the results.