• Title/Summary/Keyword: Tunnel blast design

Search Result 55, Processing Time 0.023 seconds

A Study on the Effect of Artificial Cutting Slot on the Fragmentation and Vibration Propagation in the Full-scaled Concrete Block Blasting (콘크리트 블록 발파 실험을 통한 인공 슬롯 자유면이 진동전파 및 파쇄효과에 미치는 영향에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Noh, You-Song;Suk, Chul-Gi;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.692-705
    • /
    • 2018
  • Ground vibration is one of the remarkable issues in tunnel blasting. In recent studies, to improve the fragmentation with reduction of ground vibration in tunnel blasting, a vibration-controlled blasting method with artificial cutting slot near the center-cut holes has been suggested. This study examines the effect of the different arrangement of artificial cut-slot on the vibration reduction and fragmentation by performing the full-scaled concrete block blast experiments and the numerical simulations with 3D-DFPA. The results show that the existence of artificial slot contributes to the improvement of vibration reduction, blast fragmentation and the efficiency of the cutting slot blast. It can be explained that the artificial slot play a free surface role and should decrease the burden between the cut holes. Crater volumes of the blasted concrete blocks were measured by 3-dimensional digital image analysis and compared with the ideal standard crater volume which can be calculated by theoretical standard blast design method. As a result, the ratio of burden and hole diameter which should achieve the standard crater in the cut-hole blasting were suggested.

Ground Vibration in Tunnelling by Blasting and its Effect on Surface Structures (터널굴착이 지상구조물에 미치는 영향평가 및 발파지침설계)

  • 신희순;한공창;류창하;신중호;박연준;최영학
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.463-470
    • /
    • 2000
  • In tunnel excavation by blast beneath the surface structures in urban area, the characteristics of ground vibration induced by blast and its influence on surface structures are analyzed by the field test and the numerical analysis on dynamic behaviors of the structure. According to the field test on the propagating characteristics of blast vibration through the rock mass and the concrete foundation pile. the attenuation index of peak particle velocity with distance shows the range of 1.7∼2.0 for the rock mass and the range of 2.0∼2.3 for the concrete pile. This shows that the blast vibration reduces more rapidly in the concrete pile. It is known from the numerical analysis on dynamic behavior of the structure that the coefficient of response, velocity ratio of structure response to input wave, is different according to the story of the structure. It can be said from this research that the characteristics of the ground vibration and the dynamic behavior of the structure should be well evaluated and be considered as important factors for safe blasting design especially in underground excavation at shallow depth in urban area.

  • PDF

A Study on the Evaluation of Necessity for the Support in Case of Excavartion of the Transport Drift at Danyang Site (단양지역의 운방갱도 굴착시 갱도 지보의 필요성 판정에 관한 연구)

  • 이종욱;조만섭;김일중;김영석
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.54-62
    • /
    • 1993
  • In order to evaluate the necessity for the support during the excavation of the transport drift and use the data for design applications, laboratory testings of mechanical properties of rock samples and engineering rock mass classifications on this study site were performed. The values of RMR and Q-system are 68 and 11.8, respectively. Since these results were evaluated as good, this rock mass were determined to be unsupported. Full face excavation method was determined to be suitable for excavating this drift. In case of excavation, smooth blasting techniques must be carried out at the wall rock and the crown. However, considering the blast vibration etc. that have an effect on the surrounding rock mass, approximately less than 9kg of explosive charges per blast should be maintained.

  • PDF

Effect of Rock Mass Properties on the Blast Vibration by Taguchi method (다꾸치법에 의한 암반물성의 발파진동 영향요소 분석)

  • 김남수;김보현;양형식
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.475-480
    • /
    • 2000
  • The propagation of blast vibration and the damping characteristics depend on both the mechanical properties of rock mass and weight charge. In this study, the characteristics of propagation and damping were analyzed by FLAC. The construction site was the second Kwang-ju circulating road. Taguchi method which is one of experimental design methods was used for determination of input data and parameter levels. The results showed that rock density was the most dominant of variables being concerned in this study, which affect the propagation of blast vibration.

  • PDF

Analysis on the Characteristics of Rock Blasting-induced Vibration Based on the Analysis of Test Blasting Measurement Data (시험발파 계측자료 분석을 통한 암석 발파진동 특성 분석)

  • Son, Moorak;Ryu, Jaeha;Ahn, Sungsoo;Hwang, Youngcheol;Park, Duhee;Moon, Duhyeong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.23-32
    • /
    • 2015
  • This study examined blast testing measurement data which had been obtained from 97 field sites in Korea to investigate the comprehensive characteristics of rock blasting-induced vibration focusing on the effect of excavation types (tunnel, bench) and rock types. The measurement data was from the testing sites mostly in Kangwon province and Kyungsang province and rock types were granite, gneiss, limestone, sand stone, and shale in the order of number of data. The study indicated that the blasting-induced vibration velocity was affected by the excavation types (tunnel, bench) and bench blasting induced higher velocity than tunnel blasting. In addition, the vibration velocity was also highly affected by the rock types and therefore, it can be concluded that rock types should be considered in the future to estimate a blasting-induced vibration velocity. Furthermore, the pre-existing criteria was compared with the results of this study and the comparison indicated that there was a discernable difference except for tunnel blasting results based on the square root scaling and therefore, further studies and interests, which include the effects of rock strength, joint characteristics, geological formation, excavation type, power type, measurement equipment and method, might be necessarily in relation to the estimation of blasting-induced vibration velocity in rock mass.

Dynamic behavior analysis of tunnel structure under gas explosion load (가스폭발하중에 의한 터널 구조물의 동적거동해석)

  • Kim, Young-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.5
    • /
    • pp.413-430
    • /
    • 2011
  • Consideration on the explosion resistant design of infrastructure has increased in the recent years. The explosion load is caused by gas explosion or bomb blast. In this study an analytical model is developed, whereby the tunnel structure is divided in several elements that are schematized as single degree of freedom mass-spring-dashpot systems on gas explosion. Using this simple model a sensitivity analysis has been carried out on tunnel structure design parameters such as explosive peak pressure, duration of the load, thickness of structure, burial depth. Finite element method was used to investigate the dynamic response and plastic zone of a tunnel under gas explosion. And it was found from the comparison of the analysis results that there are slight differences in the response of the intermediate wall between the single degree of freedom mass-spring-dashpot model and FEM.

A manual for the revised TBM tunnel specification (개정 TBM 터널 표준시방서 해설 연구)

  • Sagong, Myung;Jung, Chi Kwang;Moon, Joon Bai;Kim, Jeayoung;Yun, Do Sik;Yu, Myeong Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.415-428
    • /
    • 2015
  • With increase of the extension of long tunnels and urban tunnelling, demands on the new tunnelling technologies are raised. Currently, drilling and blasting tunnel construction method is mostly used, however, because of sever blast vibration for some occasions, complaints from local residents and rock damages are inevitable. Accordingly, TBM tunnelling is more efficient and effective for such conditions. Nevertheless, tunnel construction costs of TBM cannot compete that of the drill and blasting method in Korea. To overcome such limitations, various TBM equipments and construction technologies are required. In addition, continuous revision of the design standard and specification are required. In this study, a detailed explanation regarding the revised version of TBM section in the tunnel standard specification at 2015 is shown.

A Study on the effective Oscillation Characteristics of the Constructions of Blasting Operations in Seaside (수중 발파시 인근 구조물에 미치는 진동의 영향 연구)

  • Lee, Sin;Kang, Dae-Woo;Park, Hak-Bong
    • Explosives and Blasting
    • /
    • v.19 no.1
    • /
    • pp.71-84
    • /
    • 2001
  • Korean peninsula has the most mountainous areas such as mountains and hilly country, and it is surrounded by the sea on all sides but one. In this respect, a large scaled construction works have frequently been conducted. However, it is not easy to porform a large scale blasting work without giving any harm to houses or facilities nationwide. Therefore, blasting work becomes more closely related to maintenance thing due to the development of the downtown or a large structure for key facilities. Many researches on blast in the open space and tunnel blasting have been conducted. On the contrary, research on underwater blasting operations is comparatively scanty even though much more necessity of marine development is required. In this respect, this study aims to investigate the characteristics of underwater blasting operations and to make a comparative study with blast in the open space. As a result of examining into the characteristics during underwater blasting operations, the around oscillation in case of underwater blasting operations shows significantly low compared to that in case of blast in the open space, and this means that much more cautious altitude must be taken in designing underwater blasting operations compared to the design of blast In the open space. As a result of analysis on the difference between a square root and a cube root In the equation of estimating oscillations in the actual site, it is shown that it is shown to apply a square root for the estimation of oscillation at 60 meters in case of underwater blasting operations and at 22 meters case of general blast in the open space.

  • PDF

Mechanical characteristics of high-performance concrete shield segment containing ground granulated blast furnace slag and their improvement by steam curing (고성능 쉴드 세그먼트용 고로슬래그 미분말을 혼입한 콘크리트의 역학적 특성 및 증기양생 효과 분석)

  • Kim, Byoung-Kwon;Lee, Jin-Seop;Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.233-242
    • /
    • 2011
  • This study aims to evaluate the applicability of high-strength concrete mixed with blast furnace slag to shield segment lining in order to improve its performance and economic efficiency. Especially, it was also intended to derive the optimum replacing ratio of ground granulated blast furnace slag to ordinary cement as well as the optimum steam curing condition for shield segment concrete with the design strength of 60 MPa. From a series of experiments, the condition of 50% replacement of ordinary cement by ground granulated blast furnace slag and unit water content of 125 kg/$m^3$ was proposed as the optimum mixing condition. Comparing with standard curing conditions, it was also possible to expect approximately 110~442% strength improvement of concrete by steam curing in the same mixing condition.

Blast Design for Controlled Augmentation of Muck Pile Throw and Drop (발파석의 비산과 낙하를 조절하기 위한 발파 설계)

  • Rai, Piyush;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.360-368
    • /
    • 2010
  • The paper presents a case study from a surface mine where the controlled augmentation of throw and drop of the blasted muck piles was warranted to spread the muck piles on the lower berm of the bench. While the augmentation of throw increased the lateral spread and the looseness of the broken muck, the augmentation of drop significantly lowered the muck pile height for easy excavation by the excavators. In this light, the present paper highlights and discusses some pertinent changes in the blast design parameters for such specialized application of cast blasting in a surface mine, where a sandstone bench, with average height of 22-24 m was to be made amenable for excavation by 10 m3 rope shovels, which possessed maximum digging capability of up to 14 m. The results of tailoring the blast design parameters for augmentation of throw and drop are compared with the baseline blasts which were earlier practiced on the same bench by dividing the full height of the bench in 2-slices; upper slice (10-14 m high) and lower slice (12-15 m high). Results of fragment size, its distribution and total cycle time of excavator (shovel) are presented, and discussed.