• Title/Summary/Keyword: Tunnel behavior

Search Result 944, Processing Time 0.029 seconds

Hydraulic behavior of a subsea tunnel in a ground with fractured-zones (파쇄대를 통과하는 해저터널의 수리거동에 관한 연구)

  • Shin, Jong-Ho;Choi, Kyu-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1571-1580
    • /
    • 2008
  • Subsea tunnels that link land to island and among nations for transportation, efficient development of limited surface and pursuit of economic development should be designed to support pore water pressure on the lining. It is generally constructed in the bed rock of the sea bottom. When the tunnel excavation face meets fractured-zones below sea bottom, collapse may occur due to an increase of pore water pressure and large inflow. Such an example can be found in the Norwegian subsea tunnel experiences in 1980's. In this study hydraulic behavior of tunnel heading is investigated using numerical method based on the collapse of Norwegian subsea tunnel. The effect of pore water pressure and inflow rate were mainly concerned. Horse-shoe shaped model tunnel which has 50 m depth from the sea bottom is considered. To evaluate hydraulic performance, parametric study was carried out for varying relative permeability. It is revealed that pore water pressure has increased with an increase of sea depth. Especially, at the fractured-zone, pore water pressure on the lining has increased significantly. Inflow rate into tunnel has also increased correspondingly with an increase in sea depth. S-shaped characteristic relation between relative permeability and normalized pore water pressure was obtained.

  • PDF

Tunnel Pressure acting on Shallow Tunnel in Unconsolidated Ground (미고결 저토피 터널에 작용하는 토압에 관한 연구)

  • Lee, Jae-Ho;Akutagawa, Shinish;Kim, Young-Su;Moon, Hong-Duk
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.453-463
    • /
    • 2007
  • Terzaghi's tunnel pressure theory is generally used to estimate primary design pressures on tunnel support for shield and urban NATM tunnels until now. A trial is made in this paper to investigate the interaction between the ground deformation behavior and Terzaghi's tunnel pressure, which assumes pound's limit (or critical) state, by considering results of 'Terzaghi's tunnel pressure theory. two-dimensional reduced-scale model tunnel tests and nonlinear numerical analysis based on strain softening modeling. A full understanding between tunnel pressure and ground deformation behavior under the tunnel excavation and an effective utilization of this interaction lead to an economical tunnel support design and a safe construction of tunnel.

DEPTH AND LAYOUT OPTIMIZATIONS OF A RADIOACTIVE WASTE REPOSITORY IN A DISCONTINUOUS ROCK MASS BASED ON A THERMOMECHANICAL MODEL

  • Kim, Jhin-Wung;Koh, Yong-Kwon;Bae, Dae-Seok;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.429-438
    • /
    • 2008
  • The objective of the present study is the depth and layout optimizations of a single layer, high level radioactive waste repository in a discontinuous rock mass with special joint set arrangements. A single layer repository model, considering variations in the repository depths, pitches, and tunnel spacings, is used to analyze the thermomechanical interaction behavior. It is assumed that the repository is constructed in saturated granite with joints; the PWR spent fuel in a disposal canister is installed in a deposition drift which is then sealed with compacted bentonite; and the backfill material is filled in the repository tunnel. The decay heat generated by the high level radioactive wastes governs the thermomechanical behavior of the near field rock mass of the repository. The temperature and displacement behavior of the repository is influenced more by the pitch variations than the tunnel spacing and repository depth. However, the stress behavior is influenced more by the repository depth variations than the pitch and tunnel spacing. For the final selection of the tunnel spacing, pitch, and repository depth, other aspects such as the nuclide migration through a groundwater flow path, construction costs, operation costs, and so on should be considered.

A Study on Behaviour of Tunnel Considering the Location of Groundwater Leaching and Fault Fracture Zone under Tunnel Construction (지하수 용출과 단층파쇄 위치에 따른 터널 거동 연구)

  • Son, Yongmin;Kim, Nagyoung;Min, Kyungjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.37-43
    • /
    • 2015
  • Ground characteristics is important in tunnel structure utilizing the strength of underground. In the case of the fault fracture zone such as weak soil conditions exists in the tunnel section and groundwater leaching occurs at the same time, it happens to occur to excessive displacement or collapse of tunnel frequently. Fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel under construction. Behavior of fault fracture zone is determined depending on the size and orientation of the surface portion of the tunnel. If the groundwater occurs in the face of tunnel, groundwater causes displacement and collapse. And the collapse characteristics of tunnel is a major factor in determining that the time-dependent behavior. It is difficult to accurately predict groundwater leaching from the fault fracture zone in the numerical analysis method and analyze the interaction behavior of groundwater and fault fracture zone. Therefore numerical analysis method has limitations the analysis of ground water in the ground which the fault fracture zone and groundwater occurs at the same time. It is required to comprehensively predict the behavior of tunnel and case studies of tunnel construction. Thus, the location of fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel. In this study, behavior characteristics of the tunnel according to the location of the fault fracture was analyzed.

Macro-Model of Magnetic Tunnel Junction for STT-MRAM including Dynamic Behavior

  • Kim, Kyungmin;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.728-732
    • /
    • 2014
  • Macro-model of magnetic tunnel junction (MTJ) for spin transfer torque magnetic random access memory (STT-MRAM) has been developed. The macro-model can describe the dynamic behavior such as the state change of MTJ as a function of the pulse width of driving current and voltage. The statistical behavior has been included in the model to represent the variation of the MTJ characteristic due to process variation. The macro-model has been developed in Verilog-A.

Tunnel-Lining Analysis in Consideration of Seepage and Rock Mass Behavior (투수 및 암반거동을 고려한 터널 라이닝의 거동 분석)

  • Kong, Jung-Sik;Choi, Joon-Woo;Nam, Seok-Woo;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.359-368
    • /
    • 2006
  • After construction, time-variant seepage and long-term underground motion are representative factors to understand the abnormal behavior of tunnels. In this study, numerical models have been developed to analyze the behavior of tunnels associated with seepage and long-term underground motion. Possible scenarios have been investigated to establish causes-and-results mechanisms. Various parameters such as permeability of tunnel filter, seepage condition, water table, long-term rock mass load, size of damaged zone due to excessive blasting have been investigated. These are divided into two sub-parts depending on the tunnel type and major loading mechanisms depending on the types. For the soft ground tunnels, the behavior associated with seepage conditions has been studied and the effect of permeability change in tunnel-filter and the effect of water-table change which are seldom measurable are investigated in detail. For the rock mass tunnels, tunnel behavior associated with the visco-plastic behavior of rock mass has been studied and the long-term rock mass loads as a result of relaxation and creep have been considered.

Behavior of 2-Arch Tunnel with Stiffness of Grouting (그라우팅 강성도에 따른 2-Arch 터널의 거동)

  • Lee, Jong-Min;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.260-266
    • /
    • 2010
  • In this study, wish to analyze effect that affect on each tunnel (right and left tunnel) according as proceeding of leading tunnel (right tunnel), following tunnel (left tunnel) and pilot tunnel excavation through behavior of tunnel and surrounding base by model tests. And stress-transfer mechanism that occurs from in-situ loosing area and arching effect by difference of stiffness ratio and overburden heights were verified experimentally. The model tests were carried out by varying the stiffness of reinforced area and overburden height, measured deformation of tunnel and displacement of surrounding base. The model tests followed exactly the real 2-Arch tunnel construction stages.

Numerical Analysis on the Effect of Heterogeneous/Anisotropic Nature of Rock Masses on Displacement Behavior of Tunnel (비균질/이방성 암반에서의 터널 거동 분석을 위한 수치해석적 연구)

  • Baek, Seung-Han;Kim, Chang-Yong;Kim, Kwang-Yeom;Hong, Sung-Wan;Moon, Hyun-Koo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.939-948
    • /
    • 2006
  • The structural anisotropy and heterogeneity of rock mass, caused by discontinuities and weak zones, have a great influence on the deformation behavior of tunnel. Tunnel construction in these complex ground conditions is very difficult. No matter how excellent a geological investigation is, local uncertainties of rock mass conditions still remain. Under these uncertain circumstances, an accurate forecast of the ground conditions ahead of the advancing tunnel face is indispensable to safe and economic tunnel construction. This paper presents the effect of anisotropy and heterogeneity of the rock masses to be excavated by numerical analysis. The influences of distance from weak zone, the size or dimension, the different stiffness and the orientation of weak zones are analysedby 2-D and 3-D finite element analysis. By analysing these numerical results, the tunnel behavior due to excavation can be well understood and the prediction of rock mass condition ahead of tunnel face can be possible.

  • PDF

Behavior of Grouted Bolts in Consideration of Seepage Forces (침투수력을 고려한 전면접착형 록볼트의 거동연구)

  • Lee, In-Mo;Kim, Kyung-Hwa;Shin, Jong-Ho;Park, Jong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1259-1266
    • /
    • 2005
  • In a NATM tunnel, fully grouted bolts are widely used as part of supporting system. Grouted bolts play an important role not as to take some parts of load acting on a tunnel lining but as to reinforce the ground adjacent the tunnel. In conjunction with tunnel construction, the presence of groundwater may pose a number of difficulties. With respect to tunnel design, influences of groundwater on tunnel behavior have been considered in many aspects. However, the effect on grouted bolts has been rarely investigated. In this study, the behavior of grouted bolts, which are affected by the seepage forces, was examined. To investigate the effects of seepage forces, the theoretical solutions for a drained condition were also found. Based on the theoretical solutions, ground reaction curves considering seepage forces were obtained. By comparing the ground reaction curves supported by grouted bolts with those for the unsupported cases, the effect of reinforcement was evaluated. Finally, through comparison between supported ground reaction curves in the drained condition and those in the case of groundwater flow, it was found that the grouted bolts are more structurely beneficial when the seepage occurs towards the tunnel than when there is no groundwater flow.

  • PDF