• Title/Summary/Keyword: Tunnel Slope

Search Result 287, Processing Time 0.024 seconds

An Experimental Study on the Critical Velocity Considering the Slope in Tunnel Fire (경사터널내 화재 발생시 경사도가 임계속도에 미치는 영향에 관한 연구)

  • Kim, Seung-Ryoul;Jang, Yong-Jun;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • An experimental study has been conducted to investigate the effect of tunnel slope on critical velocity by using the model funnel of the 1/20 reduced-scale applying the Floods scaling law. the square liquid pool burners were used for methanol, acetone and n-heptane fires. tunnel. Tunnel slopes varied as five different degrees $0^{\circ}$, $2^{\circ}$, $4^{\circ}$, $6^{\circ}$ and $8^{\circ}$. The mass loss rate and the temperatures are measured by a load celt and K-type thermocouples for tunnel slope. Present study results in bigger the critical velocity than the research of Atikinson and Wu using the propane burner. Therefore, when estimating the critical velocity in slope tunnel, the variations of the heat release rate is an important factor. The reason is the ventilation velocity directly affects variation of heat release rate when slope tunnel fire occurred.

A Study on the Stability Analysis and Countermeasure of Tunnel Portal Failure Slope - in Suanbo Hot Springs 1 and 2 Tunnel Failure Site (터널 갱구부 붕괴 사면의 안정성 해석 및 보강공법에 관한 연구 - 수안보 온천 1, 2터널 붕괴 현장을 중심으로)

  • Baek, Yong;Koo, Ho-Bon;Yoo, Ki-Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.367-378
    • /
    • 2002
  • Recently, the number of tunnels on national roads has been increased due to the trend that construction of the large-scaled cut slopes is limited because of the environmental issues. Therefore, the slope failures of tunnel portal have often occurred. The tunnel portal in use has limitations on selection of the countermeasure and construction against slope failure. In the cases of Suanbo hot springs 1 and 2 tunnel portals, seedding was chosen and constructed as the countermeasureof slope failure when the tunnel was first built but collapsed in April, 2002. In this study, the failure sites were examined accurately through the site investigation and an efficient countermeasure according to stability analysis is presented. It is shown that it is very efficient to use resloping for Suanbo hot springs 1 tunnel and concrete buttress, rock anchor to reinforcement countermeasure, and attached rockfall prevention net by dividing the site into 3 sections for Suanbo hot springs 2 tunnel.

Case Study of the Stability of a Large Cut-Slope at a Tunnel Portal (터널 입구부 대절토 사면 안정성 사례 연구)

  • Park, Dong Soon;Bae, Jong-Soem
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.115-129
    • /
    • 2015
  • The cut-slope of a large-sectional tunnel portal is recognized as a potential area of weakness due to unstable stress distribution and possible permanent displacement. This paper presents a case study of a slope failure and remediation for a large-scale cut-slope at a tunnel portal. Extensive rock-slope brittle failure occurred along discontinuities in the rock mass after 46 mm of rainfall, which caused instability of the upper part of the cut-slope. Based on a geological survey and face mapping, the reason for failure is believed to be the presence of thin clay fill in discontinuities in the weathered rock mass and consequent saturationinduced joint weakening. The granite-gneiss rock mass has a high content of alkali-feldspar, indicating a vulnerability to weathering. Immediately before the slope failure, a sharp increase in displacement rate was indicated by settlement-time histories, and this observation can contribute to the safety management criteria for slope stability. In this case study, emergency remediation was performed to prevent further hazard and to facilitate reconstruction, and counterweight fill and concrete filling of voids were successfully applied. For ultimate remediation, the grid anchor-blocks were used for slope stabilization, and additional rock bolts and grouting were applied inside the tunnel. Limit-equilibrium slope stability analysis and analyses of strereographic projections confirmed the instability of the original slope and the effectiveness of reinforcing methods. After the application of reinforcing measures, instrumental monitoring indicated that the slope and the tunnel remained stable. This case study is expected to serve as a valuable reference for similar engineering cases of large-sectional slope stability.

Study of Stability Analysis and Countermeasure Tunnel Portal Failure using Dipole-Dipole Investigation (쌍극자(Dipole-Dipole)탐사를 활용한 터널붕괴사면 조사 및 대책방안 제시 연구)

  • Baek, Yong;Rhee, Jong-Hyun;Koo, Ho-Bon;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.493-498
    • /
    • 2003
  • In case of slope failure by planted protection is constructed on the slope according to of the choice trend of a recently environmental-friendly countermeasure, there has a limitation about diagnosis and preparation of measure. Also, collapse of tunnel pithead department slope has maximum in construction and countermeasure method of construction choice unlike cut-slope. In this study, analyzed inside circumstance of slope using geophysical exploration for stability analysis and countermeasure inside presentation of tunnel pithead department slope which collapse happens. geophysical exploration used dipole(Dipole-Dipole) method that is based to distribution principle does specific resistance, goes side by side with on-the-spot observation and draws base strength parameter and executed stability analysis, and presented stabilization countermeasure inside of collapse slope on this. I wish to conduce in development and research for use technical development of geophysical exploration technique hereafter by executing geophysical exploration in road collapse spot applying through this study.

  • PDF

Experimental study on behavior of the existing tunnel due to adjacent slope excavation in a jointed rock mass (절리암반에서의 근접사면굴착에 의한 기존터널 거동에 대한 실험적 연구)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • When a rock slope is excavated adjacent to a existing tunnel, the behavior of the existing tunnel in the jointed rock masses is greatly influenced by the joint conditions and slope status. In this study, the effects of joint dip and slope angle close to a tunnel are investigated through a large scale model using a biaxial test equipment ($3.1\;m\;{\times}\;3.1\;m\;{\times}\;0.50\;m$ (width $\times$ height $\times$ length)). The jointed rock masses were built by concrete blocks. The diameter of the modeled tunnel is 0.6 m and the dip angles of joint vary in the range of $0-90^{\circ}$. In addition, the excavated slope angle varies within $30{\sim}90^{\circ}$. Deformational behaviors of the tunnel were analyzed in consideration of joint dip and slope angle. With increase of the joint dip and slope angle, the magnitude of tunnel distortion and the moment of tunnel lining were increased. Rock mass displacement in horizontal was also dependent on the joint dip and the excavated slope angle, which indicated the optimal slope reinforcement for a specific rock mass conditions.

Slope stability method establish and carry out in vertical slope for tunnel excavation (터널의 굴착을 위한 수직사면의 안정대책 방안 수립 및 시행)

  • Park, Chal-Sook;Kim, Jun-Yong;Kwan, Han;Kim, Min-Jo;Choi, Yu-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.992-1006
    • /
    • 2008
  • The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. Cutting-slope adjacent to outlet of spillways had been originally designed to be 63 degrees and about 65m in height. Examination is carried out in preceding construction that it is caused to some problems possibility which of machine for slope cutting couldn't approach to the site, blasting for cutting slope might have negative influence on highway and roads nearby, and fine view along the Tae-hwa river would be eliminated. In order to establish stability of tunnel and more friendly natural environment that we are carry out detailed geological surface survey and analysis of slope stability. So, we are design and construct for tunnel excavation with possible method that it is keep up natural slope. The result of survey and analysis that natural slope was divided 3 zone(A, B, C zone). In A and B zone, in first removed floating rock, high tensile tension net is install that it prevent of release and falling of rock, in order to security during under working. In addition to, pre-stressed rock anchor is install purpose of security during tunnel excavation because of fault zone near vertical developed above excavation level. Zone C is relatively good condition of ground, design is only carry out random rock bolt. All zone are designed and constructed drainage hole for groundwater and surface water is easily drain. Desinged slpoe is harmony with near natural environment. Successfully, construction is completed.

  • PDF

Mechanical Behavior of Tunnel Portal in Horizontal Arch Slope (수평 아치형 터널 갱구부 비탈면의 역학적 거동)

  • Yang, Mun-Sang;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.50-61
    • /
    • 2000
  • The ground around the portal of a tunnel is the most typical part showing the 3-dimensional mechanical behavior in the tunnel. The portal slope is constructed at the weathered soft rock-mass, and remains as a potential sliding mass. The slope failure around the tunnel portal may happen drastically and induce the great disaster; hence, for the permanent stability several special techniques are required. To solve this problem, the ground around the tunnel portal may be excavated in the arch shape to develop the arching effect in horizontal direction. With the arch-type portal slope, one can reduce considerably the excavation mass and the damage of environments. This approach has not been attempted yet due to the lack of understanding and the well-defined analyzing method, so the retaining wall type portal is more universal. The 3-dimensional finite element analyses were carried out to prove that the arch type is more advantageous in safety and cost than the right angle type. The influence of the tunnel construction sequence and the strength of the rock-mass on the slope stability was investigated by focusing on the maximum shear strain in the slope, and the yield zone at the tunnel face.

  • PDF

Experimental Study on the Ground Behavior around a Tunnel due to the Sidewall Deformation of Shallow Tunnel in Longitudinal Direction Excavated under the Slope (사면 하부지반에 종단 방향으로 굴착한 얕은 터널에서 측벽변형에 따른 터널 주변지반의 거동에 대한 실험적 연구)

  • Na, Yong Soo;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • While the study of the shallow tunnel has been mainly on the longitudinal load transfer and horizontal surface conditions, the study of the ground behavior of shallow tunnel under the slope is not sufficient. Therefore, in this study on the ground behavior around a tunnel due to the sidewall deformation of shallow tunnel under the slope that is excavated in longitudinal direction, a scale-down model test has been performed. The model tunnel has the dimension of 320 mm wide, 210 mm high and 55 mm long with enough material strength in aluminum and the model ground has the uniform ground conditions by 3 types of carbon rods. The model test has been performed with the variables of slopes and the cover depths by controlling the tunnel sidewall deformation, and the change of sidewall-load, load transfer, ground subsidence was monitored and analyzed. According to the increase of the slope, the maximum ground subsidence increased by 20~39% compared to the horizontal surface. The load ratio increased by maximum 20% in the tunnel crown and decreased in sidewall according to the surface slope. The load transfer shows maximum 128% of increase at the cover depth of 1.0D, while at the 1.5D cover depth it shows non-critical difference from horizontal surface. The slope has major effects on load transfer at the cover depth of 1.0D.

Study on the prediction of the stopping probabilities in case of train fire in tunnel by Monte Carlo simulation method (몬테카를로 시뮬레이션에 의한 화재열차의 터널 내 정차확률 예측에 관한 연구)

  • Ryu, Ji-Oh;Kim, Jong-Yoon;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • The safety of tunnels is quantified by quantitative risk assessment when planning the disaster prevention facilities of railway tunnels, and it is decided whether they are appropriate. The purpose of this study is to estimate the probability of the train stopping in the tunnels at train fire, which has a significant effect on the results of quantitative risk assessment for tunnel fires. For this purpose, a model was developed to calculate the coasting distance of the train considering the coefficient of train running resistance. The probability of stopping in case of train fire in the tunnel is predicted by the Monte Carlo simulation method with the coasting distance and the emergency braking distance as parameters of the tunnel lengths and slopes, train initial driving speeds. The kinetic equations for predicting the coasting distance were analyzed by reflecting the coefficient train running resistance of KTX II. In the case of KTX II trains, the coasting distance is reduced as the slope increases in a tunnel with an upward slope, but it is possible to continue driving without stopping in a slope downward. The probability of the train stopping in the case of train fire in tunnel decreases as the train speed increases and the slope of the tunnel decreases. If human error is not taken into account, the probability that a high-speed train traveling at a speed of 250 km/h or above will stop in a tunnel due to a fire is 0% when the slope of the tunnel is 0.5% or less, and the probability of stopping increases rapidly as the tunnel slope increases and the tunnel length increases.

An Estimation on Application of Slope Stabilization Method Using PC Strand Cable (케이블을 이용한 사면안정 공법 적용성 평가)

  • Kim, Hong-Taek;Baek, Seung-Cheol;Yoo, Chan-Ho;Jang, Chung-Gil;Min, Kyung-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.984-991
    • /
    • 2008
  • In this study, to evaluate the slope and tunnel stabilization method using pc cable with bulbed. To estimate the application of tunnel support using field tests and numerical analysis results. The reinforcement effects of slope stabilization method reinforced by PC cables were estimated compared with conventional soil nail system that reinforce the slope using rebar.

  • PDF