• Title/Summary/Keyword: Tunnel Noise

Search Result 424, Processing Time 0.027 seconds

Earthwork Volume Calculation of Anchorage Underground Capacity Using Laser Scanner (레이저스캐너를 이용한 앵커리지 지하공동의 토공량 산정)

  • Choi, Seok-Keun;Kim, Dong-Yeun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.21-27
    • /
    • 2010
  • When the capacity of underground caverns' structures is measured, a general surveying is difficult to decide an accurate section of irregular shape and a photographic surveying has problems on picture acquisition due to underground dusts, noise and lighting conditions, etc. The laser scanner system is being much used for 3-dimensional modeling such as topography, planimetric features and structures, etc. without a target by measuring arriving time of a laser pulse reflected after scanning the laser pulse and calculating space coordinates of the reflection position. Accordingly, the present research carried out section and earthwork volume measurement of a tunnel by using a laser scanner in underground anchorage excavation work that a bridge construction is being executed.

Experimental Study on the Flow-Induced Vibration of Inclinced Circular Cylinders in Uniform Flow (균일 유동장내에서의 경사진 원형실린더의 유동유기진동 특성 연구)

  • Jung, Tae-Young;Hong, Sup;Moon, Seok-Jun;Ham, Il-Bae;Lee, Hun-Gon
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.303-311
    • /
    • 1995
  • Tests on flow-induced vibration of inclined cylinders in uniform flow were performed in the cavitation tunnel at the Korea Instituteof Machinery and Metals. The test program was intended to investigate flow-induced vibration characteristic of the cylinders with three different inclined angles of 10$^\circ$, 20$^\circ$ and 30$^\circ$ and to estimate the fluid force coefficients acting on the cylinders. Important observations are as follows: 1) Numal drag is dominant compared with viscous drag for the inclined angle over 20.deg. and it has the value from 1.7 to 2.0 as was observed by other researchers. 2) Lift force coefficient has large value at the lock-in range determined by 4$\Theta/f_nD$<8. Measured maximum lift force coefficients at the inclined angle of 30.$^\circ$ and 20$^\circ$ were 0.9 and 0.4 respectively.

  • PDF

COMPARISON OF CFD SIMULATION AND EXPERIMENT OF CAVITATING FLOW PAST AXISYMMETRIC CYLINDER (전산해석과 실험의 비교검증을 통한 원통형 수중운동체 주위의 캐비테이션 유동현상 연구)

  • Park, H.M.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency in devices, such as propellers, pump impellers, nozzles, injectors, torpedoes, etc., Thus, cavitating flow simulation is of practical importance for many engineering systems. In this study, a two-phase flow solver based on the homogeneous mixture model has been developed. The flow characteristics around an axisymmetric cylinder were calculated and then validated by comparing with the experimental results in the cavitation water tunnel at the Korea Ocean Research & Development Institute. The results show that this solver is highly suitable for simulating the cavitating flows. After the code validation, the cavity length with changes of water depth, angle of attack and velocity were obtained.. Cavitation inception was also calculated for various operational conditions.

Passive Control of the Condensation Shock Wave Oscillation in a Supersonic Nozzle (초음속 노즐에서 발생하는 응축충격파 진동의 피동제어)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.951-958
    • /
    • 2002
  • Rapid expansion of a moist air or a stream through a supersonic nozzle often leads to non-equilibrium condensation shock wave, causing a considerable energy loss in flow field. Depending on amount of latent heat released due to non-equilibrium condensation, the flow is highly unstable or a periodical oscillation accompanying the condensation shock wave in the nozzle. The unsteadiness of the condensation shock wave is always associated with several kinds of instabilities as well as noise and vibration of flow devices. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for the purpose of alleviation of the condensation shock oscillations in a transonic nozzle. A droplet growth equation is coupled with two-dimensional Navier-Stokes equation system. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft wind tunnel is made to validate the present computational results. The results show that the oscillations of the condensation shock wave are completely suppressed by the current passive control method.

A Study on the Performance of Centrifugal Blowers by Blades Characteristics (원심형 송풍기의 날개 특성에 따른 성능에 관한 연구)

  • Kim, J.W.;Ahn, E.Y.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.13-19
    • /
    • 2004
  • Centrifugal blowers are widely used for air handling units in industry applications. The blower has a centrifugal impeller and a scroll casing including a driving component such as an electric motor. The impeller takes forward or backward blades to induce flows into the blower, Comprehensive investigation according to the two kinds of blades is systematically carried out for a guidance of design for this kind research. It is observed that flow rate of the blower with forward blades is larger than that of the system with backward blades. Otherwise, the system noise is more pronounced in the case of the blower with forward blades. The reason is due to larger velocity from the rotating forward blades that pose obtuse angle with the circumferential direction. The distinguished characteristics are validated by a parallel experiments with a wind tunnel and in an anechoic chamber. Numerical analysis for the system shows detail information inside the blades and the casing. A series of figures to show the flow details offer deep understanding of the performance of a centrifugal blower with different blades.

Experimental Study on the Three-Dimensional Topology of Hairpin Packet Structures in Turbulent Boundary Layers (난류경계층의 3차원 헤어핀 다발구조에 대한 실험적 연구)

  • Kwon, Seong-Hun;Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.834-841
    • /
    • 2004
  • Experimental study on the three-dimensional topology of hairpin packet structures in turbulent boundary layers were carried out. Two different Reynolds number based on momentum thickness, Re$\sub$$\theta$/=514 and 934 were generated in a blowing type wind tunnel under the condition of zero pressure gradient. Simultaneous measurements of velocity fields at a wall-normal plane and wall-parallel plane by a plane PIV and a Stereo-PIV systems. The two Nd:Yag laser systems and three CCD cameras were synchronized to obtain instantaneous velocity fields at the same time. To avoid optical noise at the crossing line by the two laser light sheets, a new optical arrangement using polarization was applied. The obtained velocity fields show the existence of hairpin packet structure vividly and the idealized hairpin vortex signature is confirmed by experiment. Two counter-rotating vortex pair which reflects the cutting plane of hairpin legs are found both side of a strong streaky structure when the wall-normal plane cuts the hairpin head.

New Treatment of High-Pressure Exhaust Gas Flows Using Shock-Wave Confinement (충격파 감금법을 이용한 배기가스 유동의 새로운 처리법에 관한 연구)

  • ;;;K.Matsuo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.78-87
    • /
    • 1998
  • In many industrial practices it is an important problem to discharge a high-pressure exhaust gas to the atmosphere without generating a loud noise and much vibration. This may be achieved by confining a shock system inside the exhaust duct with a double orifice. The objective of the current work is to develop a new treatment method for the high-pressure exhaust gases. A theoretical analysis was applied to one-dimensional, steady. viscous, compressible model flowfield, and an experiment was performed using a shock tunnel facility. The results showed that the total pressure drop increases with a decrease of the opening area of the upstream orifice, and the shock confinement to the duct is possible by decreasing the opening area of the downstream orifice.

  • PDF

Benchmark Test of CFD Software Packages for Sunroof Buffeting in Hyundai Simplified Model (차량 썬루프 버페팅 현상에 대한 전산 해석 소프트웨어의 예측 성능 벤치마크 연구)

  • Cho, Munhwan;Oh, Chisung;Kim, HyoungGun;Ih, Kang-duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.171-179
    • /
    • 2014
  • Sunroof buffeting is one of the most critical issues in the vehicle wind noise phenomena. The experimental approach to solve this issue typically requires a lot of time and resources. To reduce time and cost, the numerical approach could be taken, which can also privide more insights into physical phenomena involved in sunroof buffeting, only if the accuracy in its predictions are guranteed. The benchmark test of various numerical solvers is carried out for the buffeting behavior of a simplified vehicle body, the Hyundai simplified model(HSM). The results of each solver are compared to the experimental measurements in a Hyundai aeroacoustic wind tunnel(HAWT) at various wind speeds. In particular, acoustic response tests were performed and the results were provided prior to all simulations in order to consider the real world effects that could introduce discrepancies between the numerical and experimental approaches. Through this study, most solvers can demonstrate an acceptable accuracy level for actual commercial development and high precision experimental data and computational prediction priories can be shared in order to promote the numerical accuracy level of each numerical solver.

Characteristics of Wind Speed and PM10 Concentration underneath Railway Trains (도시철도 차량 하부의 풍속 및 미세먼지 농도 특징)

  • Kim, Jong Bum;Woo, Sang Hee;Jang, Hong-Ryang;Chou, Jin-Won;Hwang, Moon Se;Park, Hyung-Koo;Yoon, Hwa Hyeon;Jung, Joon-Sig;Bae, Gwi-Nam
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • Since operation of railway trains is a major source of particle pollution in tunnel air, a particle removal device can be an effective measure to remove wear particles. To obtain design conditions of the particle removal device that will be installed underneath the railway trains, the wind speed and particle concentration underneath the trains were investigated using a three-dimensional ultrasonic anemometer and a DustTrak aerosol monitor, respectively. The measurements were made for the trains running on Seoul Metropolitan Subway Line 5 on February 10, 2015. The data were analyzed according to the track geometry (straight, curved) and train speed pattern (acceleration, cruising, and deceleration) between stations. Train speed was also analyzed. The average wind speed and $PM_{10}$ concentration underneath the trains were ~30% of the train speed and ${\sim}200{\mu}g/m^3$ for both straight and curved sections. Average $PM_{10}$ concentration for deceleration sections was higher than that for acceleration sections.

Measurement and Analysis for the Upper Side Flow Boundary Layer of a High Speed Train Using Wind Tunnel Experiments with a Scaled Model (축소모형 풍동시험을 이용한 고속열차의 유동 상부경계층 측정 및 분석)

  • Oh, Hyuck Keun;Kwon, Hyeok-bin;Kwak, Minho;Kim, Seogwon;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • The flows around a high speed train are very important because they could affect the aerodynamic characteristics such as drag and acoustic noise. Especially the boundary layer of flows could represent the characteristic of flows around the high speed train. Most previous studies have focused on the boundary layer region along the train length direction for the side of the train and underbody. The measurement and analysis of the boundary layer for the roof side is also very important because it could determine the flow inlet condition for the pantograph. In this study, the roof boundary layer was measured with a 1/20 scaled model of the next generation high speed train, and the results were compared with full-scaled computational fluid dynamics results to confirm their validity. As a result, it was confirmed that the flow inlet condition for the pantograph is about 85% of the train speed. Additionally, the characteristics of the boundary layer, which increases along the train direction, was also analyzed.