• Title/Summary/Keyword: Tunnel Lining Inspection

Search Result 59, Processing Time 0.027 seconds

Inspection for Internal Flaw and Thickness of Concrete Tunnel Lining Using Impact Echo Test (충격반향시험에 의한 콘크리트 터널 라이닝 내부결함 및 두께 조사)

  • 김영근;이용호;정한중
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.230-237
    • /
    • 1997
  • As concrete structure is getting old and decrepit, its inspection and diagnosis is getting important. Therefore, it is necessary to estimate the soundness of structure using non-destructive tests for effective repairs and maintenances. But, applications of non-destructive tests in tunnel have been used restrictively, due to accessibility only from one side in tunnel lining and presence of tunnel installations. Recently, the various non-destructive techniques have been studied. Especially, ground penetrating radar(GPR) and impact echo (IE) methods have been researched for tunnel inspection. In this study, the applicability of impact echo test in tunnel lining inspection has been investigated. This paper described the tunnel inspection for lining thickness and internal flaw using impact echo tests. Model tests were carried out using impact echo test systems on two concrete models, Model I is measuring for lining thickness, Model II is detecting for internal flaw. Also, the test were applied for lining inspections in a tunnel constructed by NATM. From the results of impact echo tests, we have concluded that impact echo test is a very useful and effective technique for inspecting the concrete tunnel linings.

  • PDF

Non-Destructive Test for Tunnel Lining Using Ground Penetrating Radar (지하레이다(GPR)를 이용한 터널 라이닝 비파괴시험에 관한 연구)

  • 김영근;이용호;정한중;신상범;조철현
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.274-283
    • /
    • 1997
  • It is necessary to estimate the soundness of tunnel using non-destructive tests(NDT) for effective repairs and maintenances. But, the state of tunnel lining could not be investigated using previous non-destructive techniques, due to the various types of support and accessibility only from one side in tunnel lining. Recently, the various non-destructive techniques such as ground penetrating radar(GPR) have been researched and developed for inspection of tunnel lining. In this study, the usefulness and applicability of GPR test in tunnel lining inspection has been investigated through model tests and tunnel site application. This paper described the tunnel lining inspection for lining thickness, cavity and support using GPR test. From the results of tests, we have concluded that GPR test are very useful and effective techniques to look into the interior of lining and measure the lining thickness.

  • PDF

Development of Inspection System for Crack on the Lining of Concrete Tunnel (콘크리트 터널 라이닝 균열검사 시스템 개발에 관한 연구)

  • 고봉수;손영갑;신동익;김병화;한창수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • To assess tunnel safety, cracks in tunnel lining are measured by inspectors, who observe cracks with their naked eyes and record them. But manual inspection is slow, and measured crack data is subjective. Therefore, this study proposes inspection system fur measuring cracks in tunnel lining and providing objective crack data to be used in safety assessment. The system consists of On-vehicle system and Laboratory system. On-Vehicle system acquires image data with line CCD camera on scanning along the tunnel lining. Laboratory system extracts crack information from the acquired image using image processing. Measured crack information is crack thickness, length and orientation. To improve accuracy of crack recognition, the geometric properties and patterns of cracks in concrete structure were applied to image processing. The proposed system was verified with experiments in both laboratory environment and field environment such as subway tunnel.

Structural Analysis of Tunnel Structures by Two and Three Dimensional Modeling (2차원 및 3차원 모델링에 의한 터널구조물의 구조해석)

  • Kim, Rae-Hyun;Chung, Jae-Hoon;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.97-102
    • /
    • 2002
  • Two dimensional Analysis has been applied to most of tunnel lining design in these days. Two dimensional analysis uses beam or curved beam element for finite element method. But because the behaviors of tunnel concrete lining structure is near to shell, it is required to model the tunnel lining as shell structure for safety design of tunnel lining structure. In this paper, two dimensional analysis by beam element and the three dimensional analysis by shell element of tunnel concrete lining are studied, in which 3 type of tunnel lining and lateral pressure factors are considered. As results of the study, three dimensional analyses of the behavior of tunnel concrete lining structure considering lateral pressure factor shows that the moment of three dimensional analysis is greater than those of two dimensional analysis. The results shows that three dimensional analysis is necessary for safety design of tunnel lining.

Development of Inspection and Diagnosis System for Safety and Maintenance in Tunnel (터널 유지관리를 위한 안전진단시스템 개발에 관한 연구)

  • Kim, Young-Geun;Baek, Ki-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2001
  • Recently, as tunnel structure is getting old, many deformations and defects have been occurred. As tunnel has the characteristics of underground structure, the estimation of the cause of deformation is very difficult. Then, it is necessary to investigate the state of tunnel lining and to estimate the deformation cause and safety for tunnel. In this study, inspection and diagnosis system for effective maintenance in tunnel was researched. Firstly, non-destructive techniques such as GPR (ground penetrating radar), impact echo test, and infrared thermal techniques were applied to tunnel lining inspection. Tunnel lining analysis system was developed to analyze the stability of tunnel. And, tunnel soundness evaluation system was developed to find the probable causes and indicate the method for repair and reinforcement for tunnel.

  • PDF

A Safety Analysis of Tunnel Lining for Monitoring (계측에 의한 터널 라이닝의 안전성 분석)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.103-110
    • /
    • 2002
  • Maintenance monitoring of the tunnel which offers continuous data during and after tunneling has been applying to tunnels in order to meet the maintenance of tunnel and to confirm continuous security of the tunnel after tunneling. But, the maintenance monitoring of tunnel results for long period is not easy to find, and moreover, the rational analysis method on tunnel monitoring has not been established yet. In this study, the relationships between displacement and stress of the tunnel concrete lining using various analysis methods are compared with maintenance monitoring. The tunnel behavior were measured in the subway tunnel passing comparative soft the weathering and analyzed both security and mechanical characteristics of the tunnel concrete lining. Also, analyzed relationship between residual water pressure applied on tunnel design and one obtained by monitoring.

Detection of the Cavity Behind the Tunnel Lining by Single Channel Seismic and GPR Method (GPR 및 단일채널 탄성파탐사에 의한 터널라이닝 배면공동 조사)

  • Shin, Sung-Ryul;Jo, Chul-Hyun;Shin, Chang-Soo;Yang, Seung-Jin;Jang, Won-Yil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.148-158
    • /
    • 1998
  • Determining the thickness if concrete lining and detecting of the cavity where is located behind tunnel lining plays an important role in the safety diagnosis of tunnel structure and the quality control. In this study, we made use of GPR and seismic method in order to find the cavity or flaw. Although GPR is very useful method in the concrete lining without rebar, it is difficult to detect the cavity in the reinforced concrete lining. We applied mini-seismic method to the reinforced concrete lining. The obtained seismic data was processed by means of seismic section in time domain and image section of power spectrum in frequency domain using Impact-Echo method as well. The proposed method can accurately show the location and depth of the cavity in the reinforced concrete lining.

  • PDF

Development of Vision-Based Inspection System for Detecting Crack on the Lining of Concrete Tunnel (비젼센서를 이용한 콘크리트 터널 라이닝 균열검사 시스템의 개발)

  • 고봉수;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.96-104
    • /
    • 2003
  • To assess tunnel safety, cracks in tunnel lining are measured by inspectors who observe cracks with their eyes. A manual inspection is, however, slow and subjective. This paper, therefore, proposes vision-based inspection system for measuring cracks in the tunnel lining that inspects cracks fast and objective. The system is consisted of an on-vehicle system and a lab system. An on-vehicle system acquires image data with line CCD camera. A lab system extracts crack then inform their thickness, length and orientation by using image processing. To improve accuracy of crack recognition the geometric properties of a crack was applied to image processing. The proposed system were verified with experiments in both laboratory and field environment.

Damage Detection of Decrepit Tunnel Structures using the NDT (비파괴 검사법에 의한 노후터널의 건전도 평가)

  • Kim, Dong-Gyou;Jung, Ho-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1388-1391
    • /
    • 2010
  • Recently, the construction of road, subway, railroad, and microtunnel for electricity supplement have been increased because of increasement of traffic in urban area, increasement of industrial transportation, and the network between cities in Korea. The deterioration of tunnel structure may occur by various internal and external factors and particularly, tunnel structures tend to contact with either underground water or harmful ions. Therefore, leakage sometimes occurred through the cracks and joints of concrete lining. The leakage in tunnel may affect the durability of concrete lining. In this study, to evaluate the durability and deterioration of concrete lining in tunnel structures, we were performed the various experiments for compressive strength. Compressive strength obtained from nondestructive inspection and compressive strength test varies according to the concrete lining conditions.

  • PDF

Crack Detection Method for Tunnel Lining Surfaces using Ternary Classifier

  • Han, Jeong Hoon;Kim, In Soo;Lee, Cheol Hee;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3797-3822
    • /
    • 2020
  • The inspection of cracks on the surface of tunnel linings is a common method of evaluate the condition of the tunnel. In particular, determining the thickness and shape of a crack is important because it indicates the external forces applied to the tunnel and the current condition of the concrete structure. Recently, several automatic crack detection methods have been proposed to identify cracks using captured tunnel lining images. These methods apply an image-segmentation mechanism with well-annotated datasets. However, generating the ground truths requires many resources, and the small proportion of cracks in the images cause a class-imbalance problem. A weakly annotated dataset is generated to reduce resource consumption and avoid the class-imbalance problem. However, the use of the dataset results in a large number of false positives and requires post-processing for accurate crack detection. To overcome these issues, we propose a crack detection method using a ternary classifier. The proposed method significantly reduces the false positive rate, and the performance (as measured by the F1 score) is improved by 0.33 compared to previous methods. These results demonstrate the effectiveness of the proposed method.