• Title/Summary/Keyword: Tunnel CCTV

Search Result 29, Processing Time 0.014 seconds

Preliminary study on car detection and tracking method using surveillance camera in tunnel environment for accident detection (터널 내 유고상황 자동 판정을 위한 선행 연구: CCTV를 이용한 차량의 탐지와 추적 기법 고찰)

  • Oh, Young-Sup;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.813-827
    • /
    • 2017
  • Surveillance cameras installed in tunnels capture the various video frames effected by dynamic and variable factors. In addition, localizing and managing the cameras in tunnel is not affordable, and quality of capturing frame is effected by time. In this paper, we introduce a new method to detect and track the vehicles in tunnel by using surveillance cameras installed in a tunnel. It is difficult to detect the video frames directly from surveillance cameras due to the motion blur effect and blurring effect on lens by dirt. In order to overcome this difficulties, two new methods such as Differential Frame/Non-Maxima Suppression (DFNMS) and Haar Cascade Detector to track cars are proposed and investigated for their feasibilities. In the study, it was shown that high precision and recall values could be achieved by the two methods, which then be capable of providing practical data and key information to an automatic accident detection system in tunnels.

Development of a deep-learning based tunnel incident detection system on CCTVs (딥러닝 기반 터널 영상유고감지 시스템 개발 연구)

  • Shin, Hyu-Soung;Lee, Kyu-Beom;Yim, Min-Jin;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.915-936
    • /
    • 2017
  • In this study, current status of Korean hazard mitigation guideline for tunnel operation is summarized. It shows that requirement for CCTV installation has been gradually stricted and needs for tunnel incident detection system in conjunction with the CCTV in tunnels have been highly increased. Despite of this, it is noticed that mathematical algorithm based incident detection system, which are commonly applied in current tunnel operation, show very low detectable rates by less than 50%. The putative major reasons seem to be (1) very weak intensity of illumination (2) dust in tunnel (3) low installation height of CCTV to about 3.5 m, etc. Therefore, an attempt in this study is made to develop an deep-learning based tunnel incident detection system, which is relatively insensitive to very poor visibility conditions. Its theoretical background is given and validating investigation are undertaken focused on the moving vehicles and person out of vehicle in tunnel, which are the official major objects to be detected. Two scenarios are set up: (1) training and prediction in the same tunnel (2) training in a tunnel and prediction in the other tunnel. From the both cases, targeted object detection in prediction mode are achieved to detectable rate to higher than 80% in case of similar time period between training and prediction but it shows a bit low detectable rate to 40% when the prediction times are far from the training time without further training taking place. However, it is believed that the AI based system would be enhanced in its predictability automatically as further training are followed with accumulated CCTV BigData without any revision or calibration of the incident detection system.

A Study on the Contents for Operation of Tunnel Management Systems Using a View Synthesis Technology (영상정합 기술을 활용한 터널관리시스템의 운영 효율성 제고를 위한 콘텐츠 연구)

  • Roh, Chang-gyun;Park, Bum-Jin;Kim, Jisoo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.6
    • /
    • pp.507-515
    • /
    • 2016
  • In South Korea, there are a large number of tunnels because of the mountainous terrain, and to overcome this characteristics, lengths of tunnels are more longer than existing tunnels. The need to improvement current tunnel management contents is giving rise for accidents in tunnel section is continuously increased although lots of efforts to reduce the accidents. Conventionally, disaster prevention have been focused on the Tunnel Management Systems, tunnel operators generally tend to depend on CCTV images for most contents of detailed traffic flow managing. In this paper, investigation about current Tunnel Management Systems contents using IPA survey was conducted, and Priority Improvement Contents(Accident Situation Management Support, 2nd Accident Management Support, Traffic Flow Monitoring), which importance are high, but satisfaction are low, are deducted. Also, CCTV images, lack intuitive understanding, are judged as a main cause of low satisfaction of those contents. To overcome those limitations of the existing Tunnel Management Systems, this study sought to develop a technology for the synthesis of road images to derive traffic information from synthesis images, and the contents improvement stragegy is established. Tunnel operators-oriented satisfaction survey on new contents was carried out, and scored 4.2 on a 5-point scale. This has confirmed that the availability of new contents and at this stage, with pushing ahead of long-tunnels and undersea tunnels construction, politic applications are expected.

Vehicle Detection in Tunnel using Gaussian Mixture Model and Mathematical Morphological Processing (가우시안 혼합모델과 수학적 형태학 처리를 이용한 터널 내에서의 차량 검출)

  • Kim, Hyun-Tae;Lee, Geun-Hoo;Park, Jang-Sik;Yu, Yun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.967-974
    • /
    • 2012
  • In this paper, a vehicle detection algorithm with HD CCTV camera images using GMM(Gaussian Mixture Model) algorithm and mathematical morphological processing is proposed. At the first stage, background could be estimated using GMM from CCTV input image signal and then object could be separated from difference image of the input image and background image. At the second stage, candidated object were reformed by using mathematical morphological processing. Finally, vehicle object could be detected using vehicle size informations depend on distance and vehicle type in tunnel. Through real experiments in tunnel, it is shown that the proposed system works well.

An In-Tunnel Traffic Accident Detection Algorithm using CCTV Image Processing (CCTV 영상처리를 이용한 터널 내 사고감지 알고리즘)

  • Baek, JungHee;Min, Joonyoung;Namkoong, Seong;Yoon, SeokHwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-90
    • /
    • 2015
  • Almost of current Automatic Incident Detection(AID) algorithms involve the vulnerability that detects the traffic accident in open road or in tunnel as the traffic jam not as the traffic accident. This paper proposes the improved accident detection algorithm to enhance the detection probability based on accident detection algorithms applied in open roads. The improved accident detection algorithm provides the preliminary judgment of potential accident by detecting the stopped object by Gaussian Mixture Model. Afterwards, it measures the detection area is divided into blocks so that the occupancy rate can be determined for each block. All experimental results of applying the new algorithm on a real incident was detected image without error.

Development of AI Detection Model based on CCTV Image for Underground Utility Tunnel (지하공동구의 CCTV 영상 기반 AI 연기 감지 모델 개발)

  • Kim, Jeongsoo;Park, Sangmi;Hong, Changhee;Park, Seunghwa;Lee, Jaewook
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.364-373
    • /
    • 2022
  • Purpose: The purpose of this paper is to develope smoke detection using AI model for detecting the initial fire in underground utility tunnels using CCTV Method: To improve detection performance of smoke which is high irregular, a deep learning model for fire detection was trained to optimize smoke detection. Also, several approaches such as dataset cleansing and gradient exploding release were applied to enhance model, and compared with results of those. Result: Results show the proposed approaches can improve the model performance, and the final model has good prediction capability according to several indexes such as mAP. However, the final model has low false negative but high false positive capacities. Conclusion: The present model can apply to smoke detection in underground utility tunnel, fixing the defect by linking between the model and the utility tunnel control system.

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation (역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.247-262
    • /
    • 2022
  • In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.

A Study on Falling Detection of Workers in the Underground Utility Tunnel using Dual Deep Learning Techniques (이중 딥러닝 기법을 활용한 지하공동구 작업자의 쓰러짐 검출 연구)

  • Jeongsoo Kim;Sangmi Park;Changhee Hong
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.498-509
    • /
    • 2023
  • Purpose: This paper proposes a method detecting the falling of a maintenance worker in the underground utility tunnel, by applying deep learning techniques using CCTV video, and evaluates the applicability of the proposed method to the worker monitoring of the utility tunnel. Method: Each rule was designed to detect the falling of a maintenance worker by using the inference results from pre-trained YOLOv5 and OpenPose models, respectively. The rules were then integrally applied to detect worker falls within the utility tunnel. Result: Although the worker presence and falling were detected by the proposed model, the inference results were dependent on both the distance between the worker and CCTV and the falling direction of the worker. Additionally, the falling detection system using YOLOv5 shows superior performance, due to its lower dependence on distance and fall direction, compared to the OpenPose-based. Consequently, results from the fall detection using the integrated dual deep learning model were dependent on the YOLOv5 detection performance. Conclusion: The proposed hybrid model shows detecting an abnormal worker in the utility tunnel but the improvement of the model was meaningless compared to the single model based YOLOv5 due to severe differences in detection performance between each deep learning model

A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm (기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Yim, Min-Jin;Lee, Kyu-Beom;Oh, Young-Sup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.95-107
    • /
    • 2017
  • In this study, a preliminary study was undertaken for development of a tunnel incident automatic detection system based on a machine learning algorithm which is to detect a number of incidents taking place in tunnel in real time and also to be able to identify the type of incident. Two road sites where CCTVs are operating have been selected and a part of CCTV images are treated to produce sets of training data. The data sets are composed of position and time information of moving objects on CCTV screen which are extracted by initially detecting and tracking of incoming objects into CCTV screen by using a conventional image processing technique available in this study. And the data sets are matched with 6 categories of events such as lane change, stoping, etc which are also involved in the training data sets. The training data are learnt by a resilience neural network where two hidden layers are applied and 9 architectural models are set up for parametric studies, from which the architectural model, 300(first hidden layer)-150(second hidden layer) is found to be optimum in highest accuracy with respect to training data as well as testing data not used for training. From this study, it was shown that the highly variable and complex traffic and incident features could be well identified without any definition of feature regulation by using a concept of machine learning. In addition, detection capability and accuracy of the machine learning based system will be automatically enhanced as much as big data of CCTV images in tunnel becomes rich.

Development of Fire Detection Algorithm for Video Incident Detection System of Double Deck Tunnel (복층터널 영상유고감지시스템의 화재 감지 알고리즘 개발)

  • Kim, Tae-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1082-1087
    • /
    • 2019
  • Video Incident Detection System is a detection system for the purpose of detection of an emergency in an unexpected situation such as a pedestrian in a tunnel, a falling object, a stationary vehicle, a reverse run, and a fire(smoke and flame). In recent years, the importance of the city center has been emphasized by the construction of underpasses in great depth underground space. Therefore, in order to apply Video Incident Detection System to a Double Deck Tunnel, it was developed to reflect the design characteristics of the Double Deck Tunnel. and In this paper especially, the fire detection technology, which is not it is difficult to apply to the Double Deck Tunnel environment because it is not supported on existing Video Incident Detection System or has a fail detect, we propose fire detection using color image analysis, silhouette spread, and statistical properties, It is verified through a real fire test in a double deck tunnel test bed environment.