• Title/Summary/Keyword: Tunnel Boring Machine

Search Result 116, Processing Time 1.79 seconds

Laboratory considerations about frictional force on pipe surface when slurry machine is used

  • Khazaei Saeid;Shimada Hideki;Kawai Takashi;Yotsumoto Jyunichi;Sato Iwao;Matsui Kikuo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.214-220
    • /
    • 2003
  • Pipe jacking is a name for a method to excavate a tunnel by pushing pipe into the ground from an especial pit. Size of tunnels in this method is different from under 900mm (microtunneling) to more than 3,000mm. Method of excavation is also different from hand digging to use of any kind of tunnel boring machines such as slurry and earth pressure balance (EPB) machines. Slurry pipe jacking was firmly established as a special method for the nondisruptive construction of the underground tunnels in urban area. During the pipe jacking and microtunneling process, the jacking load is an important parameter, controlling the pipe wall thickness, need to and location of intermediate jacking station, selection of jacking frame and lubrication requirements. The main component of the jacking load is due to frictional resistance. In this paper the skin friction between pipe surface and surrounding condition also lubricant quality based on a few fundamental tests, were considered. During this study unconfined compressive strength test, dynamic friction measurement test and direct shear box test were raised for one of the largest diameter slurry pipe jacking project in Fujisawa city in Japan. It could be concluded that in slurry pipe jacking, prediction of frictional forces are mainly dependent on successful lubrication, its quality and lubricant strength parameters. Conclusions from this study can be used for the same experiences.

  • PDF

Simplified Failure Mechanism for the Prediction of Tunnel Crown and Excavation Front Displacements

  • Moghaddam, Rozbeh B.;Kim, Mintae
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.101-112
    • /
    • 2019
  • This case study presented a simplified failure mechanism approach used as a preliminary deformation prediction for the Mexico City's metro system expansion. Because of the Mexico City's difficult subsoils, Line 12 project was considered one of the most challenging projects in Mexico. Mexico City's subsurface conditions can be described as a multilayered stratigraphy changing from soft high plastic clays to dense to very dense cemented sands. The Line 12 trajectory crossed all three main geotechnical Zones in Mexico City. Starting from to west of the City, Line 12 was projected to pass through very dense cemented sands corresponding to the Foothills zone changing to the Transition zone and finalizing in the Lake zone. Due to the change in the subsurface conditions, different constructions methods were implemented including the use of TBM (Tunnel Boring Machine), the NATM (New Austrian Tunneling Method), and cut-and-cover using braced Diaphragm walls for the underground section of the project. Preliminary crown and excavation front deformations were determined using a simplified failure mechanism prior to performing finite element modeling and analysis. Results showed corresponding deformations for the crown and the excavation front to be 3.5cm (1.4in) and 6cm (2.4in), respectively. Considering the complexity of Mexico City's difficult subsoil formation, construction method selection becomes a challenge to overcome. The use of a preliminary results in order to have a notion of possible deformations prior to advanced modeling and analysis could be beneficial and helpful to select possible construction procedures.

기술현황분석 : 고속 터널굴착과 터널보링머신 동향

  • Jang, Su-Ho;Lee, Yong-Beom
    • 기계와재료
    • /
    • v.21 no.4
    • /
    • pp.96-105
    • /
    • 2010
  • 도로 및 철도는 차량의 고속화와 신속한 물류의 유통을 위해 직선 및 수평화가 절실하게 요구되며, 국내 건설구간의 약 50~70%가 산악지형으로서 터널공사가 필수적으로 요구된다. 국내터널굴착은 주로 발파에 의한 NATM(New Austrian Tunneling Method)으로 공사가 이루어지고 있으나, 굴착효율이 낮으며 안전사고의 위험성이 높다. 해외에서는 급속한 시공을 위하여 TBM(Tunnel Boring Machine)의 적용 사례가 증가하고 있다. 그러나 국내에는 TBM에 대한 연구가 전무한 상태이고, TBM 터널의 설계 시공 기술과 경험이 미흡하다. 최근 대도시의 지하터널과 장대터널의 수요가 증대되어 TBM터널시공 기술과 TBM장비의 국산화가 절실하게 요구되고 있다. 본고에서는 국내외 주요 TBM 시공현황과 전망을 정리하여 TBM 터널 기술의 확보가 매우 시급함을 상기시키고자 하였다.

  • PDF

TBM 터널과 NATM 터널의 초 근접시공 사례

  • 이인기
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.161-170
    • /
    • 1999
  • 본고에서는 $1986.8\~1988.7$월중에 시공된 부산지하철 1호선 3단계 건설구간 중 서대신동 로타리에서 괴정국민학교 앞까지 연${\cdot}$경암지역에서의 TBM(Tunnel Boring Machine)으로 시행된 단선터널(7.0m)과 NATM으로 시행한 복선터널의 근접시공에 따른 간벽부 보강설계 내용과 근접부 시공시 계측결과 분석, 지보 Pattern조정 및 시공 실적 등을 제시하였다. 원설계 내용 분석 결과 지보 Pattern이 현장 지반조건에 비해 과다하였고 TBM 굴진시 Thrust 2500kN(본 기계 기준) 이상인 연암이상의 지반에서는 TBM 굴착으로의 효율성이 있었고, 경암구간에서 병행터널의 간섭영향을 배제하려면 터널간의 중심거리가 터널직경의 2배 이상이 되어야 하며, TBM 단선터널(7.0m)의 일 평균 굴진 길이는 4.6m로 분석되었다. 앞으로 이와 유사한 암층에서의 터널근접 시공 및 TBM 굴착시 본 분석내용이 참고가 되기를 기대하여 본고를 작성하였다.

  • PDF

Prediction of TBM performance based on specific energy

  • Kim, Kyoung-Yul;Jo, Seon-Ah;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.489-496
    • /
    • 2020
  • This study proposes a new empirical model to effectively predict the excavation performance of a shield tunnel boring machine (TBM). The TBM performance is affected by the geological and geotechnical characteristics as well as the machine parameters of TBM. Field penetration index (FPI) is correlated with rock mass parameters to analyze the effective geotechnical parameters influencing the TBM performance. The result shows that RMR has a more dominant impact on the TBM performance than UCS and RQD. RMR also shows a significant relationship with the specific energy, which is defined as the energy required for excavating the unit volume of rock. Therefore, the specific energy can be used as an indicator of the mechanical efficiency of TBM. Based on these relationships with RMR, this study suggests an empirical performance prediction model to predict FPI, which can be derived from the correlation between the specific energy and RMR.

Predicting ground condition ahead of tunnel face utilizing electrical resistivity applicable to shield TBM (Shield TBM에 적용 가능한 전기비저항 기반 터널 굴착면 전방 예측기술)

  • Park, Jin-Ho;Lee, Kang-Hyun;Shin, Young-Jin;Kim, Jae-Young;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.599-614
    • /
    • 2014
  • When tunnelling with TBM (Tunnel Boring Machine), accessibility to tunnel face is very limited because tunnel face is mostly occupied by a bunch of machines. Existing techniques that can predict ground condition ahead of TBM tunnel are extremely limited. In this study, the TBM Resistivity Prediction (TRP) system has been developed for predicting anomalous zone ahead of tunnel face utilizing electrical resistivity. The applicability and prediction accuracy of the developed system has been verified by performing field tests at subway tunnel construction site in which an EPB (Earth Pressure Balanced) shield TBM was used for tunnelling work. The TRP system is able to predicts the location, thickness and electrical properties of anomalous zone by performing inverse analysis using measured resistivity of the ground. To make field tests possible, an apparatus was devised to attach electrode to tunnel face through the chamber. The electrode can be advanced from the chamber to the tunnel face to fully touch the ground in front of the tunnel face. In the 1st field test, none of the anomalous zone was predicted, because the rock around the tunnel face has the same resistivity and permittivity with the rock ahead of tunnel face. In the 2nd field test, 5 m thick anomalous zone was predicted with lower permittivity than that of the rock around the tunnel face. The test results match well with the ground condition predicted, respectively, from geophysical exploration, or directly obtained either from drilling boreholes or from daily observed muck condition.

Laboratory chamber test for prediction of hazardous ground conditions ahead of a TBM tunnel face using electrical resistivity survey (전기비저항 탐사 기반 TBM 터널 굴진면 전방 위험 지반 예측을 위한 실내 토조실험 연구)

  • Lee, JunHo;Kang, Minkyu;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.451-468
    • /
    • 2021
  • Predicting hazardous ground conditions ahead of a TBM (Tunnel Boring Machine) tunnel face is essential for efficient and stable TBM advance. Although there have been several studies on the electrical resistivity survey method for TBM tunnelling, sufficient experimental data considering TBM advance were not established yet. Therefore, in this study, the laboratory-scale model experiments for simulating TBM excavation were carried out to analyze the applicability of an electrical resistivity survey for predicting hazardous ground conditions ahead of a TBM tunnel face. The trend of electrical resistivity during TBM advance was experimentally evaluated under various hazardous ground conditions (fault zone, seawater intruded zone, soil to rock transition zone, and rock to soil transition zone) ahead of a tunnel face. In the course of the experiments, a scale-down rock ground was provided using granite blocks to simulate the rock TBM tunnelling. Based on the experimental data, the electrical resistivity tends to decrease as the tunnel approaches the fault zone. While the seawater intruded zone follows a similar trend with the fault zone, the resistivity value of the seawater intrude zone decreased significantly compared to that of the fault zone. In case of the soil-to-rock transition zone, the electrical resistivity increases as the TBM approaches the rock with relatively high electrical resistivity. Conversely, in case of the rock-to-soil transition zone, the opposite trend was observed. That is, electrical resistivity decreases as the tunnel face approaches the rock with relatively low electrical resistivity. The experiment results represent that hazardous ground conditions (fault zone, seawater intruded zone, soil-to-rock transition zone, rock-to-soil transition zone) can be efficiently predicted by utilizing an electrical resistivity survey during TBM tunnelling.

Numerical analysis on the estimation of optimal disc cutter angle in transition cutter zone (전이 구간(트렌지션 커터존)의 최적 디스크커터 각도 산정에 관한 수치해석 연구)

  • Lee, Sang Yun;Song, Ki-il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • In the design of a tunnel boring machine (TBM), the excavation efficiency of the equipment depends on the design of the cutter head, which is directly in contact with the ground. Especially, the allocation of disc cutter is crucial issue. Disc cutters can be divided into center cutter zone, inner cutter zone and transition cutter zone depending on where they are placed. Many studies have been conducted to identify optimal cutting conditions for face cutters. However, research to determine the optimal cutting conditions for the transition cutter has been relatively incomplete. In this study, to identify the optimal cutting conditions for the transition cutter, numerical analysis using discrete element method was performed, and the specific energy curve according to the angle between the transition cutters was drawn to find out the optimum cutting conditions. The results show that the angle between the transition cutters showing minimum specific energy in the transition cutter zone is 9°. Transition cutter zone was divided into three sections according to the slope angle of the transition cutter. It is also found that, the greater the slope angle of the transition cutter. This finding shows good agreement with the present design of transition cutter zone.

Risk assessment for development of consecutive shield TBM technology (연속굴착형 쉴드 TBM 기술 개발을 위한 리스크 평가)

  • Kibeom Kwon;Hangseok Choi;Chaemin Hwang;Sangyeong Park;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.303-314
    • /
    • 2024
  • Recently, the consecutive shield tunnel boring machine (TBM) has gained attention for its potential to enhance TBM penetration rates. However, its development requires a thorough risk assessment due to the unconventional nature of its equipment and hydraulic systems, coupled with the absence of design or construction precedents. This study investigated the causal relationships between four accidents and eight relevant sources associated with the consecutive shield TBM. Subsequently, risk levels were determined based on expert surveys and a risk matrix technique. The findings highlighted significant impacts associated with collapses or surface settlements and the likelihood of causal combinations leading to misalignment. Specifically, this study emphasized the importance of proactive mitigation measures to address collapses or surface settlements caused by inadequate continuous tail void backfill or damaged thrust jacks. Furthermore, it is recommended to develop advanced non-destructive testing technology capable of comprehensive range detection across helical segments, to design a sequential thrust jack propulsion system, and to determine an optimal pedestal angle.

Case study on slurry performance according to the recycling of slurry TBM filtrate water with coagulant (이수식 TBM의 응집제 사용수 재활용에 따른 슬러리 성능 연구)

  • Han-Byul Kang;Jae-Won Lee;Ju-Hyi Yim;Byung-Cheol Ahn;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.449-461
    • /
    • 2024
  • The use of tunnel boring machine (TBM), a mechanized excavation method with low noise and vibration and high safety compared to NATM method, has increased globally. In particular, slurry shield TBMs are used in subsea and submarine sections because they have an advantage in high pressure compared to EPB (earth pressure balanced) methods. As such, the used water of slurry shield TBMs is discharged through wastewater treatment facilities. In the case of large-scale TBMs, the amount of water used is enormous, so it should be recycled to reduce costs and protect the environment. Various types of additives are used to improve the performance of the slurry treatment plant (STP) and filter press. Among them, coagulants improve the productivity of the filter press by neutralizing the charges on particles. In this study, lab tests were conducted to evaluate the reusability of the used water through the filter press after flocculants were added.