• Title/Summary/Keyword: Tunnel Boring Machine

Search Result 105, Processing Time 0.028 seconds

Sequential prediction of TBM penetration rate using a gradient boosted regression tree during tunneling

  • Lee, Hang-Lo;Song, Ki-Il;Qi, Chongchong;Kim, Kyoung-Yul
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.523-533
    • /
    • 2022
  • Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.

Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling

  • Golpasand, Mohammad-Reza B.;Do, Ngoc Anh;Dias, Daniel;Nikudel, Mohammad-Reza
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.643-654
    • /
    • 2018
  • Tunnel excavation leads to a disturbance on the initial stress balance of surrounding soils, which causes convergences around the tunnel and settlements at the ground surface. Considering the effective impact of settlements on the structures at the surface, it is necessary to estimate them, especially in urban areas. In the present study, ground settlements due to the excavation of East-West Line 7 of the Tehran Metro (EWL7) and the Abuzar tunnels are evaluated and the effect of the lateral earth pressure coefficient ($K_0$) on their extension is investigated. The excavation of the tunnels was performed by TBMs (Tunnel Boring Machines). The coefficient of lateral earth pressure ($K_0$) is one of the most important geotechnical parameters for tunnel design and is greatly influenced by the geological characteristics of the surrounding soil mass along the tunnel route. The real (in-situ) settlements of the ground surface were measured experimentally using leveling methods along the studied tunnels and the results were compared with evaluated settlements obtained from both semi-empirical and numerical methods (using the finite difference software FLAC3D). The comparisons permitted to show that the adopted numerical models can effectively be used to predict settlements induced by a tunnel excavation. Then a numerical parametric study was conducted to show the influence of the $K_0$ values on the ground settlements. Numerical investigations also showed that the shapes of settlement trough of the studied tunnels, in a transverse section, are not similar because of their different diameters and depths of the tunnels.

A Study on Advance Rate under the Operating Conditions of EPB Shield TBM Based on TBM Operation Data (현장 굴진자료 분석에 의한 토압식 쉴드 TBM의 운전조건과 굴진속도 연구)

  • An, Man Sun;Lim, Kwang-Su;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.839-848
    • /
    • 2011
  • TBM (Tunnel Boring Machine) tunnel should be carry out with the adopted machine until the end of excavation because of impossibility of replacement or modification of machine. Observation of the face of the tunnel is difficult, especially in EPB(Earth Pressure Balance) shield TBM, predict changes in the ground condition with analyzing data, collected during the excavation, and it should be reflected in construction. Until recently, subjects of studies on TBM are mainly the determination of machine and the development of advance rate prediction model, according to the characteristics of ground which is the target of excavation. However, study focused on the estimation of ground conditions and the improvement in operational methods using excavation data of TBM equipment, the principal of the excavation, has been done not so much. This study examine the variances in advance rate depending on changes in operating conditions and evaluate the optimal operating conditions of adopt machine, using working data obtained from EPB shield TBM project. The result of this study is suggested as follows. First, cutter head RPM and total thrust force are biggest influences on advance rate, Second, it is recommended for proper advance rate that total thrust force is controlled while optimum cutter head RPM is kept, Third, according to the increasing trend of total thrust force, the changes in ground conditions can be predicted, the appropriate operating conditions can be determined.

Prediction of Disk Cutter Wear Considering Ground Conditions and TBM Operation Parameters (지반 조건과 TBM 운영 파라미터를 고려한 디스크 커터 마모 예측)

  • Yunseong Kang;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.143-153
    • /
    • 2024
  • Tunnel Boring Machine (TBM) method is a tunnel excavation method that produces lower levels of noise and vibration during excavation compared to drilling and blasting methods, and it offers higher stability. It is increasingly being applied to tunnel projects worldwide. The disc cutter is an excavation tool mounted on the cutterhead of a TBM, which constantly interacts with the ground at the tunnel face, inevitably leading to wear. In this study quantitatively predicted disc cutter wear using geological conditions, TBM operational parameters, and machine learning algorithms. Among the input variables for predicting disc cutter wear, the Uniaxial Compressive Strength (UCS) is considerably limited compared to machine and wear data, so the UCS estimation for the entire section was first conducted using TBM machine data, and then the prediction of the Coefficient of Wearing rate(CW) was performed with the completed data. Comparing the performance of CW prediction models, the XGBoost model showed the highest performance, and SHapley Additive exPlanation (SHAP) analysis was conducted to interpret the complex prediction model.

Experimental and numerical investigation of fiber-reinforced slag-based geopolymer precast tunnel lining segment

  • Arass Omer Mawlod;Dillshad Khidhir Hamad Amen Bzeni
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • In this study, a new sustainable material was proposed to prepare precast tunnel lining segments (TLS), which were produced using a fiber-reinforced slag-based geopolymer composite. Slag was used as the geopolymer binder. In addition, polypropylene and carbon fibers were added to reinforce TLSs. TLSs were examined in terms of flexural performance, load-deflection response, ductility, toughness, crack characteristics, and tunnel boring machine (TBM) thrust force. Simultaneously, numerical simulation was performed using finite element analysis. The mechanical characteristics of the geopolymer composite with a fiber content of 1% were used. The results demonstrated that the flexural performance and load-deflection response of the precast TLSs were satisfactory. Furthermore, the numerical results were capable of predicting and realistically capturing the structural behavior of precast TLSs. Therefore, fiber-reinforced slag-based geopolymer composites can be applied as precast TLSs.

Prediction of Geological Condition Ahead of Tunnel Face Using Hydraulic Drilling Data (유압 천공데이터를 이용한 터널 굴진면 전방 지질상태 예측)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Kim, Kwang-Sik;Yim, Sung-Bin;Seo, Kyoung-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.483-492
    • /
    • 2009
  • During construction of a tunnel and underground structure, it is very important to acquire accurate information of the rock mass will be excavated. In this study, the drill monitoring method was applied for rapid prediction of geological condition ahead of the tunnel face. Mechanical data(speed, torque and feed pressure) from drilling process using a hydraulic drilling machine were analyzed to assess rock mass characteristics. Rock mass information acquired during excavation from drilling monitoring were compared with results from horizontal boring and tunnel seismic profiling(TSP). As the result, the drilling monitoring method is useful to assess rock mass condition such as geological structures and physical properties ahead of the tunnel face.

Analysis and Assessment of Tunnel Boring Machine Performance in Hard Rock (경암반에서 TBM 굴진 해석 및 평가)

  • 배규진;이용수;홍성완;박홍조
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.144-155
    • /
    • 1994
  • This research is designed to assess current achievement levels for mechanized excavation systems in Korea adn suggest the model predictive of TBM performance using statistical approaches. A test section in the TBM construction sites is selected to measure and analyze TBM performance. The field records including operating data, time allocation into downtime catagories, and machine design are analyzed on a shift basis. There are a total of 240 shifts, with most days operating two shifts per day. Examples of the probability density functions produced from the test section are presented and discussed. Relationships between TBM penetration rate and rock physical properties are investigated and the empirical equations for TBM performance prediction are also assessed with the field data.

  • PDF

A Study on the Stability of Shield TBM Thrust Jack in the Behavior of Operating Fluid According to Thrust Force (추력에 따른 동작 유체의 거동에 있어 쉴드 TBM 추진잭의 안정성에 대한 연구)

  • Lee, Hyun-seok;Na, Yeong-min;Jang, Hyun-su;Suk, Ik-hyun;Kang, Sin-hyun;Kim, Hun-tae;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • In this paper, the stability of the tunnel boring machine (TBM), used in tunnel excavation, according to the thrust force of the thrust jack was investigated. The existing hydraulic cylinder analysis method is fluid-structure interaction (FSI) analysis, where all of the flow setting and dynamic characteristics should be considered. Therefore, there is a need for a method to solve this problem simply and quickly. To facilitate this, the theoretical pressure in the hydraulic cylinder was calculated and compared with the analytical and experimental results. In the case of the analysis, the pressure generated inside the cylinder was analyzed statically, considering the operating characteristics of the shield TBM, and the stress and pressure were calculated. This method simplifies the analysis environment and shortens the analysis time compared to the existing analysis method. The obtained theoretical and analytical data were compared with the measured data during actual tunneling, and the analysis and experimental data showed a relative error of approximately 23.89%.

Disc Cutter Consumptions Prediction on Applying Shield TBM at the Han Riverbed Tunnel (한강하저터널의 쉴드TBM 적용시 디스크 커터 소모량 예측과 소모량)

  • Choi, Jung-Myung;Jung, Hyuk-Sang;Chun, Byung-Sik;Lee, Yong-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.562-570
    • /
    • 2010
  • This study was conducted to estimate the number of disc cutter consumption and to predict amount of disc cutters when a shield TBM(Tunnel Boring Machine) of the Han Riverbed Tunnel was applied. In fact, it is almost impossible to change the machine after starting the excavation using the shield TBM method. Therefore, it is important to design an appropriate equipment in the shield method - an efficiency choice of the operation equipment plays a key role in the shield tunnel processing. For the above reason, the disc cutter consumption prediction is quite important so that the detailed analysis is required. A number of disc cutter consumption was predicted by the three methods, viz. KOMATSU, MITSUBISHI and NTNU. In addition, the predicted results were compared with field data. The prediction of disc cutter consumption showed that 237 for KOMATSU, 501 for MITSUBISHI, and 634 for NTNU, respectively. However, a total number of 1,263 disc cutter consumption were investigated during the tunnel construction. It was found that there was a huge difference between the predicted and real values of the disc cutter consumption. The more detailed investigation showed that the disc cutter was worn out bluntly in the northbound tunnel, meanwhile it was worn out sharply in the southbound tunnel. In particular, the disc cutter consumption in the southbound tunnel was increased rapidly because of rear abrasion for remaining mucks in the chamber.

  • PDF