• Title/Summary/Keyword: Tungstophosphoric acid

Search Result 14, Processing Time 0.02 seconds

3-Molybdo-9-tungstophosphoric Acid, 6-Molybdo-6-tungstophosphoric Acid and Their Reduction Products (3-몰리브도-9-텅스토燐酸, 6-몰리브도-6-텅스토燐酸 및 이들의 환원 생성물)

  • Im Kyoung Ran;Yoon Minjoong;So Hyunsoo
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.16-20
    • /
    • 1975
  • 3-Molybdo-9-tungstophosphoric acid, 6-molybdo-6-tungstophosphoric acid and their one-electron and two-electron reduction products have been synthesized. Infrared spectra show that all of them have Keggin structure. Polarograms and optical spectra of the reduced species are reported. Both data indicate that each additional electron is localized on a molybdenum atom.

  • PDF

Conversion of Methanol to Hydrocarbons over Heteropoly Acids(II) (헤테로폴리산 촉매에 의한 탄화수소로의 메탄올 전환반응(II))

  • Hong, Seong-Soo;Lim, Ki-Chul;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.335-341
    • /
    • 1993
  • In the conversion of methanol, the effect of acide property of heteropoly compounds on the catalytic activity was investigated. The pretreatment of Cu-exchanged 12-tungstophosphoric acid with hydrogen enhanced both the selectivity for propane and the conversion of methanol, and the pretreatment of Al-exchanged 12-tungstophosphoric acid with water enhanced the acid strength of the catalyst. The water added into the reactant decreased the conversion of methanol, while the pretreatment temperature did not affect it but the propylene/propane ratio. Various partially-substituted Al salts of 12-tungstophosphoric acid showed different catalytic activities depending on the degree of Al-substitution.

  • PDF

MTBE Decomposition in a Shell & Tube Type Membrane Reactor Comprising 12-Tungstophosphoric Acid Catalyst and Polyphenylene Oxide Membrane (12-텅스토인산 촉매와 polyphenylene oxide 막으로 구성된 shell & tube 형 막반응기에서 MTBE(methyl tert-butyl ether)분해 반응)

  • 송인규;이화영;김재진
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1992.10a
    • /
    • pp.43-44
    • /
    • 1992
  • 촉매막반응기란 반응기와 분리막이 동시에 하나의 과정으로 결합된 unit로, 촉매막반응기를 사용할 경우 가역 반응에서 막을 통한 생성물의 선택적 제거는 화학 평형이동을 유발시켜 열역학적으로 얻을수 있는 평형 전환율보다 높은 전환유을 얻을 수 있다. 본 연구는 이러한 촉매막반응기의 성능에 대한 실험적 연구로, 산 촉매하에서 일어나는 MTBE 분해반응을 12-텅스토인산 촉매상에서 수행하였다.

  • PDF

Durability of Cation Exchange Membrane Containing Psf (polysulfone) in the All-vanadium Redox Flow Battery (Psf (polysulfone) 함유 양이온교환막의 바나듐 레독스-흐름 전지에서의 내구성)

  • Kim, Joeng-Geun;Kim, Jae-Chul;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • The cation exchange membrane using TPA (tungstophosphoric acid) and the block co-polymer of polysulfone and polyphenylenesulfidesulfone was prepared for a separator of all-vanadium redox flow battery. The membrane resistance of the prepared cation exchange membrane in 1mol/L $H_2SO_4$ aqueous solution was measured. The membrane resistance of the prepared Psf-PPSS and Psf-TPA-PPSS cation exchange membrane was about $0.94{\Omega}{\cdot}cm^2$. Electrochemical property of all-vanadium redox flow battery using the prepared cation exchange membrane was measured. The measured charge-discharge cell resistance of V-RFB at 4 A decreased in the order; Nafion117 < Psf-TPA-PPSS < Psf-PPSS. The durability of membrane was earried out by soaking it in $VO_2{^+}$ solution and evaluated by measuring the charge-discharge cell resistance of V-RFB with an increase of soaking time. The prepared Psf-PPSS cation exchange membrane had high durability and Psf-TPA-PPSS cation exchange membrane had almost same durability compared with Nafion117.

Conversion of Ethanol over Heteropoly Acids (헤테로폴리산 촉매에 의한 에탄올 전환반응)

  • Hong, Seong-Soo;Lee, Sang-Gi;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.549-557
    • /
    • 1993
  • In the conversion of ethanol over heteropoly acids, we have studied catalytic reactivity, reaction mechanism, effect of organic bases added to reactant, and relation between acid strength of ion-exchanged catalysts and catalytic activities. The conversion of ethanol proceeded in the pseudoliquid phase of heteropoly acid. Due to this novel behavior, area increased by supporting with $SiO_2$. The reaction mechanism of ethylene production was different from that of ether production, and various partially substituted Al salts of 12-tungstophosphoric acid showed different catalytic activities.

  • PDF

Formation and Role of Acid Sites of Heteropoly Acid Catalysts (헤테로폴리산 촉매의 산점 형성과 역할)

  • Song, In Kyu;Lee, Jong Koog;Song, Jae Cheon;Lee, Wha Young
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.431-437
    • /
    • 1994
  • The role and the formation of surface and bulk acid sites of heteropoly acids were studied by examining ethanol conversion and MTBE (methyl t-butyl ether) decomposition reaction. In ethanol dehydration diethylether was formed on the surface acid site of 12-tungstophosphoric acid, whereas ethylene was formed in the bulk acid site of the catalyst. It was revealed that water reinforced the bulk acid site of the catalyst, while organic base decreased the bulk acid function of the catalyst. The formation of acid sites of metal salts was due to hydrolysis of crystalline water and/or partial substitution of metal, and with hydrogen treatment, the acid site was reappeared. Also catalyst design as a selective oxidation catalyst was possible by controlling acid function of heteropoly acid catalyst.

  • PDF

The Electrochemical Characteristics of MEA with Pt/Cross-Linked SPEEK-HPA Composite Membranes/Pt-Ru for Water Electrolysis (수전해용 Pt/공유가교 SPEEK-HPA 복합막/Pt-Ru MEA의 전기화학적 특성)

  • Hwang, Yong-Koo;Woo, Je-Young;Lee, Kwang-Mun;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.3
    • /
    • pp.194-201
    • /
    • 2009
  • The e1ectrocatalytic properties of heteropolyacids(HPAs) entrapped in covalently cross-linked sulfonated polyetheretherketone(CL-SPEEK/HPA) membranes have been studied for water electrolysis. The HPAs, including tungstophosphoric acid(TPA), molybdophosphoric acid(MoPA), and tungstosilicic acid(TSiA) were used as additives in the composite membranes. The MEA was prepared by a non-equilibrium impregnation-reduction(I-R) method, using reducing agent, sodium borohydride(NaBH4) and tetraamineplatinum(II) chloride(pt(NH$_3$)$_4$Cl$_2$). The electrocatalytic properties of composite membranes such as the cell voltage were in the order of magnitude CL-SPEEKlMoPA40 (wt%) > /TPA30 > /TSiA40. In the optimum cell applications for water electrolysis, the cell voltage of PtlPEM/Pt-Ru MEA with CL-SPEEKlTPA30 membrane was 1.75 V at 80$^{\circ}$C and I A/cm$^2$ and this voltage carried lower than that of 1.81 V of Nafion 117. Consequently, in regards of electrochemical and mechanical characteristics and oxidation durability, the newly developed CL-SPEEKITPA30 composite membrane exhibited a better performance than the others, but CLSPEEKlMoPA40 showed the best electrocatalytic activity (1.71 Vat 80$^{\circ}$C and 1 A/cm$^2$) among the composite membranes.

The Preparation and Physicochemical Characteristics of Covalently Cross-Linked SPEEK/HPA Composite Membranes for Water Electrolysis (수전해용 공유가교 SPEEK/HPA 복합막의 제조 및 물리화학적 특성)

  • Hwang, Yong-Koo;Lee, Kwang-Mun;Woo, Je-Young;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.95-103
    • /
    • 2009
  • In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of polyether ether ketone (PEEK) as polymer matrix was sulfonated (SPEEK) and the organic-inorganic blend composite membranes has been prepared by loading heteropoly acids (HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA). And then these were covalently cross-linked (CL-SPEEK/HPA) as the electrolyte and MEA of polymer electrolyte membrane electrolysis (PEME). As a result, the optimum reaction conditions of CL-SPEEK/HPA was established and the electrochemical characteristics such as ion conductivity ($\sigma$) were in the order of magnitude: CL-SPEEK /TPA30 (${\sigma}=0.128\;S/cm^{-1}$) < /MoPA40 (${\sigma}=0.14\;S/cm^{-1})$ < /TSiA30 (${\sigma}=0.22\;S/cm^{-1}$) at $80^{\circ}C$, and mechanical characteristics such as tensile strength: CL-SPEEK /TSiA30 $\fallingdotseq$ /MoPA40 < /TPA30. Consequently, in regards of above characterisitics and oxidation durability, the CL-SPEEK/TPA30 exhibited a better performance in PEME than the others, but CL-SPEEK/MoPA40 showed the best electrocatalytic activity of cell voltage 1.71 V among the composite membranes. The dual effect of higher proton conductivity and electrocatalytic activity with the addition of HPAs, causes a synergy effect.

Preparation and Characterization of TPA Captured CL-SPEEK Polymer Composite Membranes for Water Electrolysis (수전해용 술폰화 폴리에테르 에테르 케톤과 고정된 TPA 고분자 복합막의 제조 및 특성)

  • CHA, JINSAN;YOON, YOUNGYO;KIM, MINJIN;KIM, BOYOUNG;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • Polyether ether ketone (PEEK) composite including tungstophosphoric acid(TPA) membranes have been intensively investigated for polymer electrolyte membrane water electrolysis (PEMWE) and thus covalently linked sulfonated polyether ether ketone (CL-SPEEK) with captured TPA composite membranes were prepared and characterized. Sulfonated polyether ether ketone (SPEEK) was prepared in sulfonation of PEEK and was cross-linked with 1,4 diiodobutane. The carbonyl group of SPEEK was reduced with $NaBH_4$ and 3-isocyanatepropyltriethoxysilane (ICPTES) was added. The TPA captured composite was prepared in reaction of TPA with 3-mercaptopropyltrime thoxysilane (MPTMS). The polymer composite membranes showed better thermostability and electrochemical properties than SPEEK. The membranes were prepared by sol-gel casting method. The polymer composite membrane featured 0.1285 S/cm of proton conductivity at $80^{\circ}C$ and outstanding durability.