• Title/Summary/Keyword: Tungsten ore

Search Result 51, Processing Time 0.022 seconds

Condition of the Sangdong Tungsten Skarn Formation (상동 중석 스카른의 생성조건에 관한 연구)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.259-272
    • /
    • 1984
  • Fluid inclusion and stable isotope studies on the Sangdong tungsten skarn have led to a conclusion that the mineralizing fluids might be derived from a magma, which was inferred within 1km below the present Sangdong ore deposit. Mineral assemblages of the skarns appear to have formed under the equilibrium conditions as the fluids flow outward from a central fluid column, in which the quatz-mica occurs dominantly. A characteristic skarn showing mineralogical zonation by repeated over-prints. The quartz-mica zone at the central part of the Sangdong skarns shows the final stage of protracted fluid evolution. Thermodynamic conclusion based on simplified chemical compositions of major components may express quantitatively the conditions of the skarn formation by using diagrams.

  • PDF

The Changing Patterns of Demand-Supply and Role of Mineral Resources in Economic Growth during Industrialization of the Republic of Korea (한국공업화과정(韓國工業化過程)에서의 광물자원(鑛物資源)의 수급구조변화(需給構造變化)와 경제성장(經濟成長)에 있어서의 역할(役割))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.18 no.1
    • /
    • pp.65-92
    • /
    • 1985
  • A total of 12 mineral commodities significant in domestic output, economy and/or strategy of the Republic of Korea are chosen to examine the structural changes in production and demand-supply of these minerals during the last two decades of her industrialization. These include iron and manganese ores as the raw materials for iron and steel making, copper, zinc and tungsten ores among other non-ferrous metallic minerals, limestone (cement), kaolin, talc, pyrophyllite and graphite among other non-metallic minerals, and anthracite coal as the only domestic source of fossil energy. These are reviewed historically in time-series based on the statistical data which are tabulated and graphed in terms of domestic output, export, import, apparent demand-supply, its increasing rate, and self-sufficiency rate of each commodity. The increasing rates of demand-supply (IRDS) of some more important commodities are compared with those of Gross Domestic Production (GDP) and Economic Growth Rate (EGR) to evaluate how the IRDS contributed to the GDP and EGR. The major results revealed are as follows: Among the 12 commodities, the domestic output of 8 commodities appeared to have grown with steady upward trends: they are ores of lead, zinc and tungsten, limestone (cement), kaolin, talc, pyrophyllite and anthracite coal. Two commodities, ores of iron and copper, continued with unchanging or slightly declining trends and varied fluctuations, in spite of their cardinal importance to the heavy industry and strategy of Korea. The remaining two, graphite and manganese ore, have gradualy declined in domestic output in which the former has still enough resource potential but the latter has not and virtually ceased its domestic output. Trade patterns for mineral commodities in the Republic of Korea during the last two decades have changed greatly, being marked by a shift from mineral-exporting to mineral importing, mainly because of increasing consumption of mineral raw materials for industrialization rather than beceuse of decreasing output of domestic mineral commodities in quantity. In terms of trade patterns, the 12 commodities concerned in this study can be classified into the following four groups. The 1st group - ores of lead and tungsten have only been exported without imports. The 2nd group - amorphous graphite, and pyrophyllite have mainly been exported but partly been imported. The 3rd group - kaolin, talc and crystalline graphite have equally been exported and imported, but quantity of imports have rapidly been increased with time. The 4th group - ores of iron, manganese and zinc have shifted from exports to imports during the industrialization, particularly owing to the initiation of iron and steel making by the Pohang Iron and Steel Company in the middle 1970' s and the new establishment of the Onsan Zinc Refinery in the late 1970' s. All of the 12 commodities under considerations were far above 100% in self-sufficiency rate before or in the early 1960' s. Recently, however, most of them have been declined to below 100% except for those of limestone (cement) and pyrophyllite. It is particularly serious to identify that the self-sufficiency rates of the three important metallic minerals, iron, copper and manganese ores in 1982 appeared to be 5.1%, 0.5%, and 0.01%, respectively. The average self-sufficiency rate of the total domestic minerals produced in 1982 was 14.4% (in value) for that year. Mining industry appeared to be extremely high in its intermediate demand rate whereas its intermediate input rate to be quite low indicating that mineral raw materials have been exerted strong forward linkage effects upon the other industries rather than backward linkage effects. In comparing the curves of increasing rates of demand-supply of several major minerals - iron ore, manganese ore, copper ore, limestone (cement), kaolin, and anthracite coal - with those of Gross Domestic Production and Economic Growth Rate drawn on every graph, it is clearly shown that the curves of increasing rates of demand-supply comprise around 6 to 7 periods of cycles which roughly harmonious with those of the curves of GDP and EGR, except for the curve of anthracite coal of which the configuration seems to have resulted from the (artificial) government's mineral policy rather than from economic free market mechanism. The harmonic feature of these curves well suggests that the increasing rates of demand-supply of major minerals have been significantly contributed to the GDP and EGR. In addition, the wider amplitudes of the iron, manganese and copper curves than those of the limestone (cement) and kaolin curves indicate that the contribution of the former, metallic commodities, has been greater than that of the latter, non-metallic commodities.

  • PDF

Fluid Inclusion Studies of the Fluorite Deposits in Korea (우리나라 형석광상(螢石鑛床)의 유체포유물(流體包有物) 연구(硏究))

  • Park, Hee In
    • Economic and Environmental Geology
    • /
    • v.9 no.1
    • /
    • pp.27-43
    • /
    • 1976
  • The flourite in Hwacheon, Hwanggangri and Keumsan district are major fluorite producing areas in Korea. The fluorite deposits of Hwacheon district are wholly fissure filling hydrothermal veins embedded in Precambrian gneiss and schists and Jurassic granites. Also some fluorite deposits are emplaced in felsite whose age is unknown. Emplacement of most fluorite veins of the district are controlled by EW fracture system. Fluorites are generally accompanied to chalcedonic quartz and also kaolinite, montmorillonite, dickite and calcite in parts. Vertical and lateral mineral zonings are not distinct. The fluorite deposits in the Hwanggangri district are wholly embedded in limestone and other calcareous sediments of Paleozoic Yeongweol Group. Most of the fluorite deposits belong to one of two categories which are steeply. dipping veins and gently dipping replacement deposits adjacent to Late Cretaceous(83-90mys) granite bodies. The strikes of fluorite veins of Hwanggangri district mostly occupy the fractures of $N30^{\circ}-40^{\circ}E$ and $N30^{\circ}-40^{\circ}W$ system. Fluorites are accompanied to calcite, milky quartz, chalcedonic quartz, and also montmorillonite, kaolinite in parts. But in some deposits, scheelite, various sulfide minerals and barite are accompanied. Emplacement of fluorite deposits are largely controlled by lithology and structures of this district. In some deposits fluorite veins gradate to scheelite veins and also telescoping of the mineral zones are found in this district. In the Keumsan district, fissure-filled fluorite veins and replacement deposits are mostly emplaced in limestone of Paleozoic Yeongweol Group, late Cretaceous quartz-porphyry, granite and sandstone. Some deposits are emplaced in Precambrian metasediments. Mineralogy and other characteristics of the deposits in this district is similar to those of Hwanggangri district. Fluid inclusion studies reveal the difference of salinities, $CO_2$ contents of ore fluid and temperatures during fluorite mineral deposition in the these districts. In Hwacheon district, ore-fluids were comparatively dilute brine and low $CO_2$ content. Filling temperatures ranges $104^{\circ}C$ to $170^{\circ}C$. In the Chuncheonshinpo mine, most deeply exploited one in this district, salinitles range 0.5-2. 2wt. % NaCl and filling temperatures range from $116^{\circ}C$ to $143^{\circ}C$. In the Hwanggangri district, ore fluids were complex and filling temperature ranges very widly. In the contact metasomatic fluorite deposits, ore fluid were NaCl rich brines with moderate $CO_2$ content and filling temperatures range from $285^{\circ}C$ to above $360^{\circ}C$. Fluids inclusions in tungsten and sulfide minerals bearing fluorite veins show high $CO_2$ content up to 31wt. %. Filling temperature ranges from $101^{\circ}C$ to $310^{\circ}C$. Fluids inclusions In mainly fluorite bearing veins were more dilute brine and low $CO_2$ contents. Filling temperatures range from $95^{\circ}C$ to $312^{\circ}C$. Filling temperature of fluid inclusions of Keumsan district are between $95^{\circ}C$ and $237^{\circ}C$. Data gathered from geologic, mineralogic and fluid inclusion studies reveal that fluorite mineralization in H wacheon district proceeded at low temperature with dilute brine and low $CO_2$ content. In Hwangganri district, fluorite mineralization proceeded by several pulse of chemically distinct ore fluids and formed the mineralogically different type of deposits around cooling granite pluton which emplaced comparatively shallow depth.

  • PDF

On the Genesis of Skarn-type Scheelite Deposits at the Dongmyoung mine (동명광산(東明鑛山)의 스카른형(型) 회중석(灰重石) 광상(鑛床)의 성인(成因))

  • Oh, Mihn-Soo;Park, Ki-Hwa
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.37-49
    • /
    • 1983
  • The skarn type tungsten deposits are developed in the contact aureole of Jurassic biotite-hornblende granodiorite and limestone beds. The latter can be divided into the Great Limestone Series of Joseon System and Gabsan Formation which is correlative to the Hongjeom Series of Pyeongahn System. The skarns are impregnated in the limestone, sandstone, schist and granodiorite, and showing zonal distribution. The five skarn zones are from fresh limestone inwards to wollastonite-skarn, clinopyroxene-skarn, clinopyroxene-garnet skarn, garnet skarn and vesuvianite skarn zone. The ore mineral, scheelite, disseminates in the clinopyroxene-garnet and vesuvianite skarn zone, and the size of the scheelite crystals in vesuvianite skarn zone is larger than in clinopyroxene- garnet skarn zone. According to the mineral paragenesis and the composition of skarn minerals, oxygen fugacity ($fo_2$) is low. Fluid inclusions in quartz comprise much $LCO_2$ and fluid inclusion studies revealed that the homogenization temperatures range $240-290^{\circ}C$.

  • PDF

Geochemistry of Ogbang Tungsten Deposits, Southern Korea (옥방중석광상(玉房重石鑛床)의 지구화학(地球化學))

  • Kim, Sabng Yup
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.53-71
    • /
    • 1986
  • Detailed studies of regional geology and geochemistry of the tungsten mineralisation of Ogbang mine were carried out; in particular geochemical trends of major and trace elements of different lithological units, in comparison with those of the Sangdong area, together with igneous plutons in the area. The Ogbang deposit is in a pegmatitic association localised only in amphibolites whilst pegmatites in adjacent schists and gneisses are barren. The tungsten is geochemically accompanied by increase of $K_2O$, $Na_2O$ and Rb, and depletion of Sr. The trend of Rb/Sr ratio to the type of mineralisation, in commonly seen in the mineralised granites of the world, suggests that the tungsten in the Ogbang pegmatites was supplied by hydrothermal processes which at the same time caused Rb enrichment and Sr depletion. These trend could be of use in the search for new ore bodies in common with those of mineralised granitic or pegmatitic host rocks. There is no evidence that the granites in the area have any genetic influence spacially and temporarily on the initial scheelite formation.

  • PDF

Study on Revision of Minerals HSK Code of Korea (한국의 광산물 HSK Code 개정방안 연구)

  • Lee, Hwa Suk;Kim, Yu Jeong
    • Mineral and Industry
    • /
    • v.27
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, a proposal for revision of HSK Code was established on legally designated minerals and national stockpile minerals. It is difficult to exactly identify trade balances of minerals, such as lithium ore, rare earth ore, serpentine, kidney stone in legally designated minerals and ingot of indium, ferro-tungsten, ingot of antimony, granule of selenium, gallium, lanthanum oxide, cerium carbonate in national stockpile minerals because HSK Codes of them were not allocated separately. Furthermore, specific use, standard, component, type of products cannot be exactly identified in current HSK Code system. Therefore, it is makes rule to separately manage minerals which were managed by government such as legally designated minerals and national stockpile minerals. However, a proposal for revision of HSK Code system was established to comply with international standard(HS Code) and the items over a certain size(amounts : over 50 mil.$, volumes : over 5000 ton) were selected as revised subjects. Moreover hierarchies between HSK Codes were considered.

  • PDF

The Mineralogical and Geochemical Study on Korean Scheelites and its Application to the Ore Prospecting (한국산 灰重石鑛의 광물학적, 지화학적 연구 및 그의 探査에의 이용)

  • So, Chil-Sup;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.79-93
    • /
    • 1979
  • Twenty five samples of the scheelite-powellite series from twelve Korean tungsten deposits of various geologic settings were studied mineralogically and geochemically. Variations in the trace-element contents of the scheelite minerals are considered in relation to geologic settings and mineralogic properties. Scheelites from ore deposits developed in similar geologic settings and under similar physicochemical conditions are characterized by specific combinations of trace elements.

  • PDF

Geochemical Study on Pollution of Heavy Metals in Soils, Plants and Streams in the Vicinity of Abandoned Metal Mines -Dalseong and Kyeongsan Mines- (금속폐광산주변의 토양, 식물 및 하천의 중금속오염에 대한 지화학적 연구 -달성 및 경산광산-)

  • Lee, Jae Yeong;Lee, In Ho;Lee, Sun Yeong
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.597-613
    • /
    • 1996
  • The tonnage of copper and tungsten produced at Dalseong mine by Taehan Tungsten Mining Company from 1961 to 1971 was 48,704 tons (M/T) of 4 wt.% Cu and 1,620 tons (S/T) of 70wt.% WO, but the mine was closed in 1974. Kyeongsan mine is a small abandoned cobalt mine with no data of production. To investigate the pollution level of the mine areas, soils, plants (Ohwi and Pampanini), stream waters and stream sediments were taken and Fe, Mn, Cu, Pb, Zn, Ni, Co, Cd and Cr were analysed by ICP. Soils are considerably contaminated by the heavy metals related to ore deposits, The heavy metal contents in plants vary with the species and parts of plants. Stream waters are anomalously high in heavy metals in the vicinity of the mines but the contents decrease downstream in the process of dilution and precipiation. However, heavy metal contents increase very high in stream sediments due to precipiation. To protect environmental damages caused by acid mine drainages wetlands must be constructed outside pits, and it is necessary to fill pits with waters, limestone chips and organic materials, which give reducing and alkaline condition to ores. Under the condition pyrite is protected from oxidation and aqueous iron sulphates precipitate to form stable secondary pyrite.

  • PDF

Skarn Formation in Metamorphic Rocks of the Chungju Mine Area (충주광산 지역 계명산층의 텅스텐 스카른화작용)

  • Kim, Gun-Soo;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.185-197
    • /
    • 1995
  • Tungsten skarns in the Chungju mine which consists mainly of strata-bound type iron ore deposits are found in the vicinity of the contact between the age-unknown Kyemeongsan Formation and granitic rock intrusions of Mesozoic age($134{\pm}2Ma$). Tungsten skarns were formed extensively from alumina and silica-rich schistose rocks by the introduction of calcium and iron from hydrothermal solution. The skarns comprise a metasomatic column and are subdivided into four facies; garnet facies, wollastonite facies, epidote facies and chlorite facies. The skarn process in time-evolutional trend can be divided broadly into the four facies in terms of the paragenetic sequence of calc-silicates and their chemical composition. Skarn and ore minerals were formed in the following sequence; (1) garnet facies, adjacent to biotite granite, containing mainly garnet(>Ad96) and magnetite, (2) wollastonite facies containing mainly wollastonite and garnet(Ad95~60), (3) epidote facies, containing mainly epidote(Ps35~31), quartz, andradite-grossular(Ad63~50), and scheelite, (4) chlorite facies, adjacent to and replacing schist, containing mainly chrolite, muscovite, quartz, calcite, epidote(Ps31~25), hematite and sulfides. The mineral assemblage and mineral compositions. suggest that the chemical potentials of Ca and Fe increased toward the granitic rock, and the component Al, Mg, K, and Si decreased from the host rock to granitic rock. The homogenization temperature and salinity of fluid inclusion in scheelite, quartz and epidote of epidote facies skarn is $300-400^{\circ}C$ and 3-8wt.% eqiv. NaCl, respectively. ${\delta}^{34}S$ values of pyrite and galena associated with chlorite facies skarn is $9.13{\sim}9.51%_{\circ}$ and $5.85{\sim}5.96%_{\circ}$, respectively. The temperature obtained from isotopic com· position of coexisting pyrite-galena is $283{\pm}20^{\circ}C$. Mineral assemblages and fluid inclusion data indicate that skarn formed at low $X_{CO_2}$, approximately 0.01. Temperature of the skarn mineralization are estimated to be in the range of $400^{\circ}C$ to $260^{\circ}C$ and pressure to be 0.5 kbar. The oxygen fugacity($fo_2$) of the skarn mineralization decreased with time. The early skarn facies would have formed at log $fo_2$ values of about -25 to -27, and late skarn facies would have formed at log $fo_2$ values of -28 to -30. The estimated physicochemical condition during skarn formation suggests that the principal causes of scheelite mineralization are reduction of the ore·forming fluid and a decrease in temperature.

  • PDF

Fluid Inclusion Studies on the Wolak Tungsten-Molybdenum Deposits, Korea (월악 중석-몰리브덴 광상의 유체포유물 연구)

  • Lee, In Sung;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.1
    • /
    • pp.17-32
    • /
    • 1982
  • The Wolak tungsten-molybdenum deposits are tungsten-molybdenum bearing quartz veins which filled the fractures in Pre-Cambrian pebble-bearing calcareous hornfels, hornfels and Cretaceous granite. There are two vein groups in this mine, Dongsan vein group in the west and Kwangcheon vein group in the east. The ore minerals are wolframite, scheelite, molybdenite, native bismuth, bismuthinite, pyrite, arsenopyrite, chalcopyrite, cubanite, stannite, pyrrhotite, sphalerite, galena, marcasite, Pb-Bi sulfosalt and ilmenite. Quartz, calcite, beryl, fluorite, muscovite, rhodochrosite and siderite are gangue minerals. Fluid inclusion studies were carried out for the quartz, beryl, scheelite, early and late fluorite. Fluid inclusion studies reveal that liquid-gas inclusions are most common and occur in all of the minerals examined. Filling degree of the inclusions in the late fluorite is much higher than that of the inclusions in quartz and early fluorite. Liquid $CO_2$ bearing liquid-gas inclusions occur in quartz and early fluorite. Liquid, gas and solid phase inclusions occur in quartz, beryl and scheelite. Salinities of inclusions in quartz and beryl from Dongsan vein group range from 3.9 to 8.0, from 5.3 to 7.7 wt.% NaCl equivalent respectively. Salinities in the late fluorite range from 1.5 to 3.2 wt.% NaCl equivalent. In Kwangcheon vein group salinities range from 3.9 to 9.6 wt.% NaCl equivalent in quartz, from 2.8 to 7.3 wt.% NaCl equivalent in early fluorite, from 1.3 to 1.5 wt.% NaCl equivalent in late fluorite. Homogenization temperatures of inclusions range from $239^{\circ}$ to higher than $360^{\circ}C$ in quartz, over $360^{\circ}C$ in scheelite, from $288^{\circ}C$ to higher than $360^{\circ}C$ in beryl, and from $159^{\circ}$ to $202^{\circ}C$ in late fluorite of the Dongsan vein group. In Kwangcheon vein group, homo genization temperatures of inclusions range from $240^{\circ}C$ to higher than $360^{\circ}C$ in quartz and from $240^{\circ}$ to $328^{\circ}C$ in early fluorite. As a whole, in Dongsan and Kwangcheon vein groups it seems that there are no distinct differences in mineralogy, salinities and homogenization temperatures. No distinct variations in homogenization temperatures are revealed through about 300 m vertically in both district. The faint trend of increase in salinities in the lower level can be detected. The salinity, $CO_2$ content and the temperature of ore fluid were much higher in the early vein stage and then dropped off in the late stage of mineralization as represented by the quartz and fluorite inclusion data.

  • PDF