• 제목/요약/키워드: Tungsten nitride

검색결과 54건 처리시간 0.027초

Gallium nitride nanoparticle synthesis using nonthermal plasma with gallium vapor

  • You, K.H.;Kim, J.H.;You, S.J.;Lee, H.C.;Ruh, H.;Seong, D.J.
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1553-1557
    • /
    • 2018
  • Gallium nitride (GaN) nanoparticles are synthesized by the gallium particle trapping effect in a $N_2$ nonthermal plasma with metallic Ga vapor. A proposed method has an advantage of synthesized GaN nanoparticle purity because the gallium vapor from the inductively heated tungsten boat does not contain any impurity source. The synthesized particle size can be controlled by the amount of Ga vapor, which is adjusted using the plasma emission ratio of nitrogen to gallium, owing to the particle trapping effect. The synthesized nanoparticles are investigated by electron microscopy studies. High-resolution transmission electron microscopy (HRTEM) studies confirm that the synthesized GaN nanoparticles (10-40 nm) crystallize in a single-phase wurtzite structure. Room-temperature photoluminescence (PL) measurements indicate the band-edge emission of GaN at around 378 nm without yellow emission, which implies that the synthesized GaN nanoparticles have high crystallinity.

Gallium Nitride Nanoparticle Synthesis Using Non-thermal Plasma with N2 Gas

  • 유광호;김정형;유신재;류현;성대진;신용현;장홍영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.236.1-236.1
    • /
    • 2014
  • Compounds of Ga, such as gallium oxide (Ga2O3) and gallium nitride (GaN), are of interest due to its unique properties in semiconductor application. In particular, GaN has the potentially application for optoelectronic device such as light-emitting diodes (LEDs) and laser diodes (LDs) [1]. Nanoparticle is an interesting material due to its unique properties compared to the bulk equivalents. In this report, we develop a synthesizing method for gallium nitride nanoparticle using non-thermal plasma. For gallium source, the gallium is heated by thermal conduction of tungsten boat which is heated by eddy current induced from RF current in antenna. Nitrogen source for nanoparticle synthesis are from inductively coupled plasma with N2 gas. The synthesized nano particles are analyzed using field-emission scanning microscope (FESEM), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS). The synthesized particles are investigated and discussed in wide range of experiment conditions such as flow rate, pressure and RF power.

  • PDF

The Effect of Oxygen Introduction on Oxidation Resistance and Cutting Performance of Silicon Nitride Ceramics

  • Nagano, Mituyoshi;Sano, Hideaki;Sakaguchi, Shigeya;Zheng, Guo Bin;Uchiyama, Yasuo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.857-858
    • /
    • 2006
  • In order to clarify the wear resistance as cutting tools, the effect of oxygen addition on oxidation behavior of the ${\beta}-Si_3N_4$ ceramics with 5 mass% $Y_2O_3$ and 2 or 4 mass% $Al_2O_3$ was investigated by performing oxidation tests in air at $1300^{\circ}$ to $1400^{\circ}C$ and cutting performance tests. From test results, we could conclude that the mechanical properties of ${\beta}-Si_3N_4$ ceramics depending on oxygen introduction are much effective on cutting performance improvements of ${\beta}-Si_3N_4$ ceramics.

  • PDF

Non-Destructive Detection of Hertzian Contact Damage in Ceramics

  • Ahn, H.S.;Jahanmir, S.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.114-121
    • /
    • 1995
  • An ultrasonic technique using normal-incident compressional waves was used to evaluate the surface and subsurface damage in ceramics produced by Hertzian indentation. Damage was produced by a blunt indenter (tungsten carbide ball) in glass-ceramic, green glass and silicon nitride. The damage was classified into two types; (1) Hertzian cone crack, in green glass and fine grain silicon nitride, and (2) distributed subsurface micro fractures, without surface damage, produced in glass ceramic. The ultrasonic technique was successful in detecting cone craks. The measurement results with the Hertzian cone cracks indicated that cracks perpendicular to the surface could be detected by the normal-incident compressional waws. Also shown is the capability of normal-incident compressional waves in detection distributed micro-sized cracks size of subsurface microfractures.

Machinable Ceramics 의 가공 성능 평가를 위한 실험적 연구 (An Experimental Study on the Turning Machinability of Machinable Ceramics)

  • 강재훈;이재경
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.79-87
    • /
    • 1990
  • Advanced ceramics have some excellent properties as the material for the mechanical component. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. Thus it is required also by a strong boom of demands for development of Machinable ceramics with high machinability in the most of industries. In present research, experiments are carried out to compare the machinability of sample Machinable ceramics. A $\ell$N(Aluminum Nitride) with additives of BN(Boron Nitride), yttrium. CaO are turned with cut-off tool type tungsten carbide bite using conventional turning machine.

  • PDF

Nano-Mechanics 분석을 통한 질화 텅스텐 확산방지막의 질소 유량에 따른 연구 (Study of Tungsten Nitride Diffusion Barrier for Various Nitrogen Gas Flow Rate by Employing Nano-Mechanical Analysis)

  • 권구은;김성준;김수인;이창우
    • 한국진공학회지
    • /
    • 제22권4호
    • /
    • pp.188-192
    • /
    • 2013
  • 반도체 소자의 소형화, 고집적화로 박막의 다층화 및 선폭 감소로 인한 실리콘 웨이퍼와 금속 박막 사이의 확산을 방지하기 위한 많은 연구가 이루어지고 있다. 본 연구는 tungsten (W)을 주 물질로 증착시 nitrogen (N)의 유량을 2.5~10 sccm으로 변화시키며 증착된 확산방지막의 nano-mechanics 특성에 대해 연구하였다. 증착률, 비저항 및 결정학적 특성을 ${\beta}$-ray backscattering spectroscopy, 4-point probe, X-ray diffraction (XRD)을 이용하여 측정한 후 Nano-indenter를 사용하여 nano-mechanics 특성을 조사하였다. 그 결과 질소 가스 유량이 5 sccm 포함된 박막에서 표면 경도(surface hardness)는 10.07 에서 15.55 GPa로 급격하게 증가하였다. 이후 질소가스의 유량이 7.5 및 10 sccm에서는 표면 경도가 각각 12.65와 12.77 GPa로 질소 가스 유량이 5 sccm인 박막보다 표면경도가 상대적으로 감소하였다. 이는 박막 내 결정질과 비정질의 W과 N의 결합 비율의 차이에 의한 영향으로 생각되며, 또한 압축응력에 기인한 스트레스 증가가 원인으로 판단된다.

A STUDY ON MECHANICAL PROPERTIES OF TiN, ZrN AND WC COATED FILM ON THE TITANIUM ALLOY SURFACE

  • Oh, Dong-Joon;Kim, Hee-Jung;Chung, Chae-Heon
    • 대한치과보철학회지
    • /
    • 제44권6호
    • /
    • pp.740-750
    • /
    • 2006
  • Statement of problems. In an attempt to reduce screw loosening, dry lubricant coatings such as pure gold or tefron have been applied to the abutment screw. However, under repeated tightening and loosening procedures, low wear resistance and adhesion strength of coating material produced free particles on the surface of abutment screw and increased frictional resistance resulting in screw tightening problems. Purpose. The aim of this study was to compare friction coefficient, adhesion strength, vickers hardness and evaluate coating surface of titanium alloy specimens coated with TiN(titanium nitride), ZrN(zirconium nitride) and WC(tungsten carbide). Material and method. Titanium alloy(Ti-6Al-4V) discs of 12mm in diameter and 1mm in thickness divided into 4 groups. TiN, ZrN and WC was coated for the specimens of 3 groups respectively, and those of 1 group were not coated. Each group was made up of 4 specimens. In this study, sputtering method was used among the PVD(Physical Vapor Deposition) techniques available for TiN, ZrN and WC coatings. Friction coefficient, adhesion strength, vickers hardness and coating surface of 4 groups were measured. Results. 1. For all three coating conditions, friction coefficient was significantly decreased. Especially, ZrN coated surface showed the lowest value. $TiN(0.39{\pm}0.02)$, $ZrN(0.24{\pm}0.01)$, $WC(0.31{\pm}0.03)$. 2. TiN coating showed the highest adhesion strength, however ZrN coating had the lowest value. $TiN(25.3N{\pm}1.6)$, $ZrN(14.8N{\pm}0.6)$, $ WC(18.4N{\pm}0.7)$. 3. Vickers hardness of all three coatings was remarkably increased as compared with that of none coated specimen. TiN coating had the highest Vickers hardness, however WC coating showed the lowest value. $TiN(1865.2{\pm}33.8)$, $ZrN(1814.4{\pm}18.6)$, $WC(1008.5{\pm}35.9)$. 4. The ZrN or WC coated specimen showed a homogeneous and smooth surface, however the rough surface with defects was observed for TiN coating. Conclusions. When TiN, ZrN and WC coating applied to the abutment screw, frictional resistance would be reduced, as a result, the greater preload and prevention of the screw loosening could be expected.

실리콘 기판 위에 화학적 방법으로 증착된 구리 박막의 특성 연구 (A study on copper thin film growth by chemical vapor deposition onto silicon substrates)

  • 조남인;박동일;김창교;김용석
    • 한국결정성장학회지
    • /
    • 제6권3호
    • /
    • pp.318-326
    • /
    • 1996
  • 본 연구는 초고집적회로의 금속 배선으로써 보다 유용할 것으로 기대되는 구리박막의 화학적인 증착기술에 관한 것으로 precursor 물질로는 (hfac)Cu(I)VTMS ; (hevaflouoroacetylacetonate trimethyvinylsilane copper)로 명명된 금속 유기 물질을 사용하였다. 실험시스템의 초기 압력은 $10^{-6}$ Torr를 유지하고, 시스템의 챔버압력과 기판온도가 조정 가능하도록 설계, 제작되었다. 공정 조건에 따른 구리 박막 결정의 성장속도, Grain size, 전기적 성질을 측정하였다. 구리 박막을 증착하기 전에 W(tungsten) 또는 TiN(titanium nitride)이 증착되어 있는 실리콘 웨이퍼를 사용하였다. 본 연구에서는 $250^{\circ}C$이하의 상대적으로 낮은 실리콘 웨이퍼 온도에서의 실험이 가능하였으며 헬륨을 carrier gas로 사용하였는데 연구 결과 구리 박막 증착율이 $220^{\circ}C$에서 최대 $1,800\;{\AA}/분$으로 증가한 반면 표면 거칠기는 $200\;{\AA}$를 갖는 다결정 구리 박막을 관찰하게 되었다. 기판 온도가 $250^{\circ}C$이하일 때의 W(또는 TiN)과 $SiO_{2}$ 기판사이에서 구리 증착 선택성이 관찰되었으며, 최적의 기판 증착 온도는 약 $180^{\circ}C$와 반응용기 압력 0.8 Torr로 나타났다.

  • PDF

UNSM 기술을 이용한 초경의 기계적 특성변화 (Changes in Mechanical Properties of WC-Co by Ultrasonic Nanocrystal Surface Modification Technique)

  • 이승철;김준형;김학두;최갑수;아마노프 아웨즈한;편영식
    • Tribology and Lubricants
    • /
    • 제31권4호
    • /
    • pp.157-162
    • /
    • 2015
  • In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique is applied to tungsten carbide-cobalt (WC-Co) to extend the service life of carbide parts used in press mold. The UNSM technique modifies the structure, reduces the surface roughness, increases the surface hardness, induces the compressive residual stress, and increases the wear resistance of materials by introducing severe plastic deformation. The surface roughness, hardness, and compressive residual stress of WC after UNSM treatment improve by about 42, 10, and 71%, respectively. A wear test under dry conditions is used to assess the effectiveness of the UNSM technique on the friction and wear behavior of WC. The UNSM technique is found to reduce the WC friction coefficient by approximately 21% and enhance the wear resistance by approximately 85%. The improved friction and wear behavior of WC may be mainly attributed to the increased hardness and compressive residual stress. Moreover, the WC specimen is treated by UNSM technique using three different WC, silicon nitride (Si3N4) and stainless steel (STS304) balls. The surface treated by WC balls shows the highest hardness when compared with treatment by stainless steel and silicon nitride balls. According to the obtained results, the UNSM technique is believed to increase the durability of the carbide component by improving the friction and wear behavior.

탄소 나노튜브 위에 붕소 및 탄소 질화 박막이 코팅된 이종접합 구조 미세팁의 전자방출 특성 (Electron Emission Properties of Hetero-Junction Structured Carbon Nanotube Microtips Coated With BN And CN Thin Films)

  • 노영록;김종필;박진석
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.743-748
    • /
    • 2010
  • Boron nitride (BN) and carbon nitride (CN) films, which have relatively low work functions and commonly exhibit negative electron affinity behaviors, were coated on carbon nanotubes (CNTs) by magnetron sputtering. The CNTs were directly grown on metal-tip (tungsten, approximately 500nm in diameter at the summit part) substrates by inductively coupled plasma-chemical vapor deposition (ICP-CVD). The variations in the morphology and microstructure of CNTs due to coating of the BN and CN films were analyzed by field-emission scanning electron microscopy (FE-SEM). The energy dispersive x-ray (EDX) spectroscopy and Raman spectroscopy were used to identify the existence of the coated layers (CN and BN) on CNTs. The electron-emission properties of the BN-coated and CN-coated CNT-emitters were characterized using a high-vacuum field emission measurement system, in terms of their maximum emission currents ($I_{max}$) at 1kV and turn-on voltage ($V_{on}$) for approaching $1{\mu}A$. The results showed that the $I_{max}$ current was significantly increased and the $V_{on}$ voltage were remarkably reduced by the coating of CN or BN films. The measured values of $I_{max}-V_{on}$ were as follows; $176{\mu}A$-500V for the 5nm CN-coated emitter and $289{\mu}A$-540V for the 2nm BN-coated emitter, respectively, while the $I_{max}-V_{on}$ of the as-grown (i.e., uncoated) emitter was $134{\mu}A$-620V. In addition, the CNT emitters coated with thin CN or BN films also showed much better long-term (up to 25h) stability behaviors in electron emission, as compared with the conventional CNT emitter.