• Title/Summary/Keyword: Tungsten lamp

Search Result 53, Processing Time 0.019 seconds

Model Identification for Control System Design of a Commercial 12-inch Rapid Thermal Processor (상업용 12인치 급속가열장치의 제어계 설계를 위한 모델인식)

  • Yun, Woohyun;Ji, Sang Hyun;Na, Byung-Cheol;Won, Wangyun;Lee, Kwang Soon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.486-491
    • /
    • 2008
  • This paper describes a model identification method that has been applied to a commercial 12-inch RTP (rapid thermal processing) equipment with an ultimate aim to develop a high-performance advanced controller. Seven thermocouples are attached on the wafer surface and twelve tungsten-halogen lamp groups are used to heat up the wafer. To obtain a MIMO balanced state space model, multiple SIMO (single-input multiple-output) identification with highorder ARX models have been conducted and the resulting models have been combined, transformed and reduced to a MIMO balanced state space model through a balanced truncation technique. The identification experiments were designed to minimize the wafer warpage and an output linearization block has been proposed for compensation of the nonlinearity from the radiation-dominant heat transfer. As a result from the identification at around 600, 700, and $800^{\circ}C$, respectively, it was found that $y=T(K)^2$ and the state dimension of 80-100 are most desirable. With this choice the root-mean-square value of the one-step-ahead temperature prediction error was found to be in the range of 0.125-0.135 K.

Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens

  • Song, Hyun-Hwa;Lee, Jae-Kwan;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si-Young;Lee, Min-Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.72-78
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the phototoxic effects of blue light exposure on periodontal pathogens in both planktonic and biofilm cultures. Methods: Strains of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis, in planktonic or biofilm states, were exposed to visible light at wavelengths of 400.520 nm. A quartz-tungsten-halogen lamp at a power density of $500mW/cm^2$ was used for the light source. Each sample was exposed to 15, 30, 60, 90, or 120 seconds of each bacterial strain in the planktonic or biofilm state. Confocal scanning laser microscopy (CSLM) was used to observe the distribution of live/dead bacterial cells in biofilms. After light exposure, the bacterial killing rates were calculated from colony forming unit (CFU) counts. Results: CLSM images that were obtained from biofilms showed a mixture of dead and live bacterial cells extending to a depth of $30-45{\mu}m$. Obvious differences in the live-to-dead bacterial cell ratio were found in P. gingivalis biofilm according to light exposure time. In the planktonic state, almost all bacteria were killed with 60 seconds of light exposure to F. nucleatum (99.1%) and with 15 seconds to P. gingivalis (100%). In the biofilm state, however, only the CFU of P. gingivalis demonstrated a decreasing tendency with increasing light exposure time, and there was a lower efficacy of phototoxicity to P. gingivalis as biofilm than in the planktonic state. Conclusions: Blue light exposure using a dental halogen curing unit is effective in reducing periodontal pathogens in the planktonic state. It is recommended that an adjunctive exogenous photosensitizer be used and that pathogens be exposed to visible light for clinical antimicrobial periodontal therapy.

Study on the Development of Measuring System for Fermentation Degree of Liquid Swine Manure Using Visible Ray (가시광선을 이용한 돈분뇨 액비 부숙도 측정장치 개발에 관한 연구)

  • Choi, D.Y.;Kwag, J.H.;Park, K.H.;Song, J.I.;Kim, J.H.;Kang, H.S.;Han, C.B.;Choi, S.W.;Lee, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.227-236
    • /
    • 2010
  • This study was conducted to develop an measuring system and method for fermentation degree of liquid swine manure by visible ray. The constituent changes of liquid swine manure were examined. pH gradually increased with time, but EC gradually decreased. Malodor strength decreased gradually with aeration treatment with time. Control needed more time to decrease malodor strength than aeration treatment. In aeration treatment, there was no germination of seeds (radish, chinese cabbage) up to 6 weeks and germination rate at 15th week was over 50%. However, in control, there was no germination up to end of experiment. Circular chromatography method showed that there was change after 10th week in aeration treatment but there was no change up to end of experiment in control. As a result, the fermentation degree of liquid swine manure would have relations among pH, EC, germination rate, malodor concentration, and reaction of circular chromatography. The simple analytical instrument for liquid swine manure consisted of a tungsten halogen and deuterium lamp for light source, a sample holder, a quartz cell, spectrometer for spectrum analyzer, a malodour measuring device, a software, etc. Results showed that the simple analytical instrument that was developed can approximately predict the fermentation degree of liquid swine manure by visible ray. Generally, the experiment proved that the simple analytical instrument was reliable, feasible and practical for analyzing the fermentation degree of liquid swine manure.