• Title/Summary/Keyword: Tungsten Oxide

Search Result 204, Processing Time 0.026 seconds

The study on removal of slurry particles on W plug generated during tungsten CMP (WCMP에서 발생되는 W plug내 slurry particle제거에 관한 연구)

  • Yang, Chan-Ki;Kwon, Tae-Young;Hong, Yi-Koan;Kang, Young-Jae;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.366-367
    • /
    • 2006
  • In general, HF chemistry lifts off the particles during scrubbing after polishing and effectively removes particles. It is sometimes impossible to apply HF chemistry on W plug due to the degradation of electrical characteristics of a device. In this paper, a post W CMP cleaning process is proposed to remove residue particles without applying HF chemistry. After W CMP, recessed plugs are created, therefore they easily trap slurry particles during CMP process. These particles in recessed plug are not easy to remove by brush scrubbing when $NH_4OH$ chemistry is used for the cleaning because the brush surface can not reach the recessed area of plugs. Buffing with oxide slurry was followed by W CMP due to its high selectivity to W. The buffing polishes only oxide slightly which creates higher plug profiles than surrounding oxide. Higher profiles make the brush contact much more effectively and result in a similar particle removal efficiency even in $NH_4OH$ cleaning to that in HF brush scrubbing.

  • PDF

Tribological Properties of Tungsten Oxide Nanorods (산화 텅스텐 나노막대의 트라이볼로지 특성)

  • Kim, Dae-Hyun;Hahn, Jun-Hee;Song, Jae-Yong;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.344-350
    • /
    • 2011
  • Friction and wear behavior of tungsten oxide nanorods (TONs) was investigated using friction force microscopy(FFM) employing colloidal probes instead of conventional sharp tips. Vertically well-ordered TONs with 40 nm diameter, 130 nm length and 100 nm pitch width were synthesized on an anodic aluminium oxide substrate using two step electrochemical anodizing processes. The colloidal probe (diameter 20 ${\mu}m$) attached at the free end of tipless cantilever was oscillated(scanned) against a stationary surface of vertically aligned TONs with various scan speeds (1.2 ${\mu}m/s$, 3.0 ${\mu}m/s$ and 6.0 ${\mu}m/s$) and sliding cycles (100, 200 and 400) under normal load of 800 nN. The friction force and wear depth decreased with the increase of the scan speed. Plastically deformed thin layers were formed and sparsely deposited on the worn nonorod surface. The lower wear rate of the TONs with the longer oscillating cycles was attributed to the decreased real contact pressure due to the increase of real contact area between the colloidal probe and the TONs.

Fluorine Effects on CMOS Transistors in WSix-Dual Poly Gate Structure (텅스텐 실리사이드 듀얼 폴리게이트 구조에서 CMOS 트랜지스터에 미치는 플로린 효과)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun;Choi, Kang-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.177-184
    • /
    • 2014
  • In chemical vapor deposition(CVD) tungsten silicide(WSix) dual poly gate(DPG) scheme, we observed the fluorine effects on gate oxide using the electrical and physical measurements. It is found that in fluorine-rich WSix NMOS transistors, the gate thickness decreases as gate length is reduced, and it intensifies the roll-off properties of transistor. This is because the fluorine diffuses laterally from WSix to the gate sidewall oxide in addition to its vertical diffusion to the gate oxide during gate re-oxidation process. When the channel length is very small, the gate oxide thickness is further reduced due to a relative increase of the lateral diffusion than the vertical diffusion. In PMOS transistors, it is observed that boron of background dopoing in $p^+$ poly retards fluorine diffusion into the gate oxide. Thus, it is suppressed the fluorine effects on gate oxide thickness with the channel length dependency.

Tungsten Silicide ($WSi_2$) for Alternate Gate Metal in Metal-Oxide-Semiconductor (MOS) Devices (금속-산화막-반도체 소자에서 대체 게이트 금속인 텅스텐 실리사이드의 특성 분석)

  • 노관종;윤선필;양성우;노용한
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.64-67
    • /
    • 2000
  • Tungsten silicide(WSi$_2$) is proposed for the alternate gate electrode of ULSI MOS devices. Good structural property and low resistivity of WSi$_2$ deposited by a low pressure chemical vapor deposition(LPCVD) method directly on SiO$_2$ is obtained after annealing. Especially, WSi$_2$-SiO2 interface remains flat after annealing tungsten silicide at high temperature. Electrical characteristics of annealed WSi$_2$-SiO$_2$-Si(MOS) capacitors were improved in view of charge trapping.

  • PDF

Acidic Properties of Tungsten Oxide Supported on Zirconia and Catalytic Activities for Acid Catalysis (Zirconia에 담지된 산화텅스텐 촉매의 산 성질과 산 촉매활성)

  • Sohn, Jong Rack;Park, Man Young
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.247-251
    • /
    • 1999
  • Tungsten oxide supported on zirconia was prepared by drying powdered $Zr(OH)_4$ with ammonium metatungstate aqueous solution, followed by calcining in air at high temperature. Upon the addition of only small amount of tungsten oxide (1 wt % $WO_3$) to $ZrO_2$, both the acidity and acid strength of catalyst increased remarkably, showing the presence of $Br{\ddot{o}}nsted$ and Lewis acid sites on the surface of $WO_3$/$ZrO_2$. The high acid strength and large amount of acid sites on $WO_3$/$ZrO_2$ were due to the presence of the W=O bond nature of complex formed by the interaction between $WO_3$ and $ZrO_2$. The catalyst containing 20 wt % $WO_3$, calcined at 973 K, showed the highest catalytic activity for the 2-propanol dehydration, while the catalyst containing 15 wt % $WO_3$, calcined at 1023 K, exhibited the highest catalytic activity for the cumene dealkylation. For the 2-propanol dehydration the catalytic activities of $WO_3$/$ZrO_2$ catalysts were roughly correlated with their acidities.

  • PDF

A Quartz Tube Based Ag/Ag+ Reference Electrode with a Tungsten Tip Junction for an Electrochemical Study in Molten Salts

  • Park, Y.J.;Jung, Y.J.;Min, S.K.;Cho, Y.H.;Im, H.J.;Yeon, J.W.;Song, K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.133-136
    • /
    • 2009
  • A newly designed Ag/$Ag^+$ reference electrode in a quartz tube with a tungsten tip junction (W-tip-Quartz- REF) was fabricated and its electrochemical performance was compared with a conventional Pyrex tube-based Ag/$Ag^+$ reference electrode (Py-REF). The results of the electrochemical potential measurements with the W-tip-Quartz- REF and the Py-REF in the LiCl-KCl eutectic melts for a wide temperature range proved that the oxide layer on the surface of the tungsten metal tip provided a high ionic conduction. Stability of our newly designed W-tip- Quartz-REF was tested by measuring a junction potential for 12 hours at 700${^{\circ}C}$. The results of the cyclic voltammetric measurement indicated that the Ag/$Ag^+$ reference electrode in the quartz tube with a tungsten tip junction can provide a good performance for a wide temperature range.

Morphology-Controlled WO3 and WS2 Nanocrystals for Improved Cycling Performance of Lithium Ion Batteries

  • Lim, Young Rok;Ko, Yunseok;Park, Jeunghee;Cho, Won Il;Lim, Soo A;Cha, EunHee
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.89-97
    • /
    • 2019
  • As a promising candidate for anode materials in lithium ion battery (LIB), tungsten trioxide ($WO_3$) and tungsten disulfide ($WS_2$) nanocrystals were synthesized, and their electrochemical properties were comprehensibly studied using a half cell. One-dimensional $WO_3$ nanowires with uniform diameter of 10 nm were synthesized by hydrothermal method, and two-dimensional (2D) $WS_2$ nanosheets by unique gas phase sulfurization of $WO_3$ using $H_2S$. $WS_2$ nanosheets exhibits uniformly 10 nm thickness. The $WO_3$ nanowires and $WS_2$ nanosheets showed maximum capacities of 552 and $633mA\;h\;g^{-1}$, respectively, after 100 cycles. Especially, the capacity of $WS_2$ is significantly larger than the theoretical capacity ($433mA\;h\;g^{-1}$). We also examined the cycling performance using a larger size $WO_3$ and $WS_2$ nanocrystals, showing that the smaller size plays an important role in enhancing the capacity of LIBs. The larger capacity of $WS_2$ nanosheets than the theoretical value is ascribed to the lower charge transfer resistance of 2D nanostructures.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

The Thermal and Mechanical Properties of Epoxy Composites Including Boron Carbide Surface Treated with Iron Oxide and Tungsten (철산화물과 텅스텐으로 표면 처리된 보론카바이드를 포함하는 에폭시 조성물의 열적·기계적 물성)

  • Kim, Taehee;Lee, Wonjoo;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.113-117
    • /
    • 2018
  • Boron carbide is lower in hardness than diamond or boron nitride but has a hardness of more than 30 GPa and is used for manufacturing tank armors and ammo shells due to its high hardness. It is also used as a neutron absorber due to its ability to absorb neutrons, which is increasing its use in nuclear power projects. Neutrons have no interaction with electrons and are known to pass through the material without interactions. Along with boron carbide, the atoms with high interaction with neutrons are hydrogen, and high hydrogen concentration polyesters and epoxy polymers including boron are used as materials for manufacturing products for nuclear power generation waste. In this paper, the surface of boron carbide is treated with iron oxide and tungsten to improve interaction between modified boron carbide and epoxy polymer. XRD and XPS were used to confirm that iron oxide and tungsten are well attached on the surface of boron carbide, respectively. The mechanical strength of the surface treated boron carbide was measured by a universal testing machine (UTM) and the dynamic characteristics of the cured product were observed by using a dynamic analyzer (DMA).