• Title/Summary/Keyword: Tuned Liquid Mass Damper

Search Result 43, Processing Time 0.024 seconds

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.

Mitigation of motions of tall buildings with specific examples of recent applications

  • Kareem, Ahsan;Kijewski, Tracy;Tamura, Yukio
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.201-251
    • /
    • 1999
  • Flexible structures may experience excessive levels of vibration under the action of wind, adversely affecting serviceability and occupant comfort. To ensure the functional performance of a structure, various design modifications are possible, ranging from alternative structural systems to the utilization of passive and active control devices. This paper presents an overview of state-of-the-art measures that reduce the structural response of buildings, including a summary of recent work in aerodynamic tailoring and a discussion of auxiliary damping devices for mitigating the wind-induced motion of structures. In addition, some discussion of the application of such devices to improve structural resistance to seismic events is also presented, concluding with detailed examples of the application of auxiliary damping devices in Australia, Canada, China, Japan, and the United States.

Passive vibration control of plan-asymmetric buildings using tuned liquid column gas dampers

  • Fu, Chuan
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.339-355
    • /
    • 2009
  • The sealed, tuned liquid column gas damper (TLCGD) with gas-spring effect extends the frequency range of application up to about 5 Hz and efficiently increases the modal structural damping. In this paper the influence of several TLCGDs to reduce coupled translational and rotational vibrations of plan-asymmetric buildings under wind or seismic loads is investigated. The locations of the modal centers of velocity of rigidly assumed floors are crucial to select the design and the optimal position of the liquid absorbers. TLCGD's dynamics can be derived in detail using the extended non-stationary Bernoulli's equation for moving reference systems. Modal tuning of the TLCGD renders the optimal parameters by means of a geometrical transformation and in analogy to the classical tuned mass damper (TMD). Subsequently, fine-tuning is conveniently performed in the state space domain. Numerical simulations illustrate a significant reduction of the vibrations of plan-asymmetric buildings by the proposed TLCGDs.

Nonlinear Characteristics Evaluation of Tuned Liquid Damper with White Noise Amplitude (백색잡음 하중 크기에 따른 TLD의 비선형 특성 평가)

  • Woo, Sung-Sik;Lee, Sang-Hyun;Choi, Ki-Young;Chung, Lan;Park, Tae-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2008
  • In this study, it was investigated for dynamic nonlinear characteristics using dynamic data obtained by shaking table test. The design of Tuned Liquid Damper(TLD) has limitation to plan based on Tuned Mass Damper(TMD) analogy and linear wave theory. Also, while there are many studies regarding properties of TLD under harmonic load, there are not estimated for dynamic non-linear characteristics of TLD under the load that is not governed by particular frequency like a white noise. This paper investigated dynamic non-linear characteristics of TLD varied with load amplitude using a white noise and suggested equations that can estimate damping ratio, natural frequency ratio and effective mass ratio of TLD.

OPTIMAL VIBRATION CONTROL OF LARGE STRUCTURES (대형 구조물의 최적 진동제어)

  • 윤정방;김상범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.156-161
    • /
    • 1992
  • Over the past twenty years, the concept of structural control has been investigated for the application to large civil engineering structures. At the early years, passive control systems, such as tuned mass damper(TMD) and tuned liquid mass bamper(TLD), have been utilized to reduce the wind induced vibrations of tall buildings, decks and pylons of long-span bridges. More recently, the active control concept has been applied to reducing the structural vibration and increasing the human comfortness in tall buildings during strong wind. In this study, the effectiveness of the active tuned mass damper(ATMD) has been investigated for reducing vibration of large structures during strong earthquake. Stochastic optimal control theory has been employed. Example analyses are carried out through analytical simulation studies.

  • PDF

Optimum LCVA for suppressing harmonic vibration of damped structures

  • Shum, K.M.;Xu, Y.L.;Leung, H.Y.
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • Explicit design formulae of liquid column vibration absorber (LCVA) for suppressing harmonic vibration of structures with small inherent structural damping are developed in this study. The developed design formulae are also applicable to the design of a tuned mass damper (TMD) and a tuned liquid column damper (TLCD) for damped structures under harmonic force excitation. The optimum parameters of LCVA for suppressing harmonic vibration of undamped structures are first derived. Numerical searching of the optimum parameters of tuned vibration absorber system for suppressing harmonic vibration of damped structure is conducted. Explicit formulae for these optimum parameters are then obtained by a series of curve fitting techniques. The analytical result shows that the control performance of TLCD for reducing harmonic vibration of undamped structure is always better than that of non-uniform LCVA for same mass and length ratios. As for the effects of structural damping on the optimum parameters, it is found that the optimum tuning ratio decreases and the optimum damping ratio increases as the structural damping is increased. Furthermore, the optimum head loss coefficient is inversely proportional to the amplitude of excitation force and increases as the structural damping is increased. Numerical verification of the developed explicit design expressions is also conducted and the developed expressions are demonstrated to be reasonably accurate for design purposes.

Serviceability-oriented analytical design of isolated liquid damper for the wind-induced vibration control of high-rise buildings

  • Zhipeng Zhao;Xiuyan Hu;Cong Liao;Na Hong;Yuanchen Tang
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 2024
  • The effectiveness of conventional tuned liquid dampers (TLDs) in controlling the wind-induced response of tall flexible structures has been indicated. However, the impaired control effect in the detuning condition or a considerably high mass cost of liquid may be incurred in ensuring the high-level serviceability. To provide an efficient TLD-based solution for wind-induced vibration control, this study proposes a serviceability-oriented optimal design method for isolated TLDs (ILDs) and derives analytical design formulae. The ILD is implemented by mounting the TLD on the linear isolators. Stochastic response analysis is performed for the ILD-equipped structure subjected to stochastic wind and white noise, and the results are considered to derive the closed-form responses. Correspondingly, an extensive parametric analysis is conducted to clarify a serviceability-oriented optimal design framework by incorporating the comfort demand. The obtained results show that the high-level serviceability demand can be satisfied by the ILD based on the proposed optimal design framework. Analytical design formulae can be preliminarily adopted to ensure the target serviceability demand while enhancing the structural displacement performance to increase the safety level. Compared with conventional TLD systems, the ILD exhibits higher effectiveness and a larger frequency bandwidth for wind-induced vibration control at a small mass ratio.

Sloshing characteristics of an annular cylindrical tuned liquid damper for spar-type floating offshore wind turbine

  • Jeon, S.H.;Seo, M.W.;Cho, Y.U.;Park, W.G.;Jeong, W.B.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.331-343
    • /
    • 2013
  • The natural sloshing frequencies of annular cylindrical TLD are parametrically investigated by experiment, aiming at the exploration of its successful use for suppressing the structural vibration of spar-type floating wind turbine subject to multidirectional wind, wave and current excitations. Five prototypes of annular cylindrical TLD are defined according to the inner and outer radii of acryl container, and eight different liquid fill heights are experimented for each TLD prototype. The apparent masses near the first and second natural sloshing frequencies are parametrically investigated by measuring the apparent mass of interior liquid sloshing to the acceleration excitation. It is observed from the parametric experiments that the first natural sloshing frequency shows the remarkable change with respect to the liquid fill height for each TLD model with different container dimensions. On the other hand, the second natural sloshing frequency is not sensitive to the liquid fill height but to the gap size, for all the TLD models, convincing that the annular cylindrical sloshing damper can effectively suppress the wave- and wind-induced tilting motion of the spar-type floating wind turbine.

Experimental Evaluation of Design Parameters for TLCD and LCVA (TLCD와 LCVA의 설계파라미터에 대한 실험적 평가)

  • Lee, Sung-Kyung;Min, Kyung-Won;Park, Ji-Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.403-410
    • /
    • 2009
  • In this paper, damping coefficients and effective masses of tuned liquid-type column dampers were quantitatively evaluated based on experimental results by using system identification technique. First, shaking table tests were performed for two types of tuned liquid-type column dampers. Then, the dynamic characteristics of dampers used in this study were experimentally grasped from harmonic wave excitation testing results of the dampers with various water level. Finally, damping ratios and effective masses of the dampers with varying water level were quantitatively evaluated from minimizing the errors between numerical and experimental results. It was confirmed from system identification results that damping ratio and effective mass are decreased as the water level of dampers is increased.

Wind Response Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-Time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 풍응답 제어성능평가)

  • Heo, Jae-Sung;Lee, Sung-Kyung;Lee, Sang-Hyun;Park, Eun-Churn;Kim, Hong-Jin;Jo, Bong-Ho;Jo, Ji-Seong;Kim, Dong-Young;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.189-194
    • /
    • 2007
  • An experimental real-time hybrid method, which implements the wind response control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an wind-load input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.

  • PDF