• Title/Summary/Keyword: Tuned Liquid Column

Search Result 48, Processing Time 0.024 seconds

Experimental study of controllable MR-TLCD applied to the mitigation of structure vibration

  • Cheng, Chih-Wen;Lee, Hsien Hua;Luo, Yuan-Tzuo
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1481-1501
    • /
    • 2015
  • MR-TLCD (Magneto-Rheological Tuned Liquid Column Damper) is a new developed vibration control device, which combines the traditional passive control property with active controllability advantage. Based on traditional TLCD governing equation, this study further considers MR-fluid viscosity in the equation and by transforming the non-linear damping term into an equivalent linear damping, a solution can be obtained. In order to find a countable set of parameters for the design of the MR-TLCD system and also to realize its applicability to structures, a series of experimental test were designed and carried out. The testing programs include the basic material properties of the MR-fluid, the damping ratio of a MR-TLCD and the dynamic responses for a frame structure equipped with the MR-TLCD system subjected to strong ground excitations. In both the analytical and experimental results of this study, it is found that the accurately tuned MR-TLCD system could effectively reduce the dynamic response of a structural system.

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

Orifice shape effect of the TLCD system under a low frequency (저주파수 하의 TLCD 시스템의 오리피스 형상 효과)

  • Lim, HeeChang
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.30-34
    • /
    • 2014
  • Bluff bodies under the external periodic force vibrate at their own natural or forced frequency. Rectangular bodies or similar structures such as high-rise towers and apartments, and recently a well-cited application - offshore floating bodies, usually needs to reduce these vibrations for stability and the mode control. Therefore, this study is aiming to reduce or control the vibration of a structure by a passive control method, i.e., TLCD (Tuned Liquid Column Damper). Controlling a moving body with a TLCD based on a variety of the orifice shape has been preliminary studied. In order to get a proper control, an optimized study is made on the design of the orifice shape, which has internal plates with the holes. The results show the force acting on the body due to the periodic movement highly depends on the number of holes on the plate and the height of the water level. Therefore, the optimum shape of the orifice and the height of the water level should be confirmed by a series of experiments.

PROBABILISTIC SEISMIC PERFORMANCE EVALUATION OF TUNED LIQUID COLUMN DAMPERS (확률적(確率的) 방법(方法)에 의한 TLCD 감쇠기(減衰器)의 지진(地震)에 대한 성능(性能) 평가(評價))

  • Han, Bong Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.115-120
    • /
    • 1996
  • 유연구조물(柔軟構造物)의 수동제어(受動制御) 시스템인 TLCD 감쇠기(減衰器)의 지진(地震)에 대한 성능(性能) 평가(評價)를 확률적(確率的) 랜덤 진동(振動) 해석방법(解析方法)을 이용하여 연구하였다. 대표적(代表的) 지진운동(地震運動)은 확률적(確率的) 비정상(非正常) 추계과정방법(推計過程方法)을 이용(利用)하였으며, TLCD 감쇠기(減衰器)의 비선형(非線型) 감쇠력(減衰力)에 대한 계산(計算)은 등가선형기법(等價線形技法)을 이용(利用)하였다. 매개변수(媒介變數)에 대한 연구(硏究)를 통하여 TLCD 감쇠기(減衰器)의 성능(性能) 평가(評價)를 수행(遂行)하였다.

  • PDF

RESPONSE CONTROL OF 3D IRREGULAR BUILDINGS UNDER SEISMIC EXCITATIONS USING TLCD (TLCD를 이용한 지진하중을 받는 3차원 비정형 건축구조물의 응답제어)

  • 김홍진;김형섭;안상경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.66-71
    • /
    • 2003
  • The semi-active TLCD system is investigated for control of responses of 3D irregular buildings under seismic excitations. The TLCD system is a special type of TMD system providing a performance similar to a TMD system but offers a number of practical advantages over the traditional TMD system. The equations of motion for the combined building and TLCD system are derived for multistory building structures with rigid floors and plan and elevation irregularities. Simulation results for control of two multistory moment-resisting space structures with vertical and plan irregularities show clearly that the semi-active TLCD control system reduces the responses of 3D irregular buildings subjected to earthquake ground motions efficiently.

  • PDF

Development of Variable Voltage Sensing for Identification of Dynamic Characteristics of TLCDs (동조액체기둥감쇠기의 동적특성을 파악하기 위한 가변전압측정 시스템 개발)

  • Jang, Seok-Jung;Kim, Jun-Hee;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.275-281
    • /
    • 2015
  • In this study, vertical motion of a Tuned Liquid Column Damper(TLCD) is measured by a variable voltage measurement system in the electric field and design parameters of the TLCD are determined. First, nonlinear damping term of the TLCD is replaced as the equivalent viscous damping term. The natural frequency and damping ratio of dynamic characteristics of the TLCD are verified. In addition, a novel liquid level measurement system is developed for measuring vertical motion of the TLCD. For the experimental achievement, experimental characterizations of natural frequency and damping ratio of the TLCD are undertaken utilizing the developed variable voltage sensing. Also, shake table testing is performed to determine the dynamic characteristics of the TLCD. As a result, the feasibility of the proposed liquid level measurement system is verified by comparison with the capacitive type wavemeter.

Control of 3-D coupled responses of wind-excited tall buildings by a spatially placed TLCD system

  • Liang, Shuguo;Li, Qiusheng;Qu, Weilian
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.193-207
    • /
    • 2000
  • The possible application of a spatially placed passive tuned liquid column damper system for suppressing coupled lateral-torsional responses of tall buildings is investigated in this paper. The wind loads acting on rectangular tall buildings are analytically expressed as 3-D stochastic model. Meanwhile, the 3-D responses of tall buildings may be coupled due to eccentricities between the stiffness and mass centers of the buildings. In these cases, torsional responses of the buildings are rather larger, and a TLCD system composed of several TLCD located near the sides of the buildings is more effective than the same TLCD placed at the building center in reducing both translational and torsional responses of the buildings. In this paper, extensive analytical and numerical work has been done to present the calculation method and optimize the parameters of such TLCD systems. The numerical examples show that the spatially placed TLCD system can reduce coupled along-wind, across-wind and torsional responses significantly with a fairly small mass ratio.

Structural evaluation of degradation products of Loteprednol using LC-MS/MS: Development of an HPLC method for analyzing process-related impurities of Loteprednol

  • Rajesh Varma Bhupatiraju;Bikshal Babu Kasimala;Lavanya Nagamalla;Fathima Sayed
    • Analytical Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.98-113
    • /
    • 2024
  • The current investigation entails the characterization of five degradation products (DPs) formed under different stress conditions of loteprednol using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, this study developed a stable high-performance liquid chromatography (HPLC) method for evaluating loteprednol along with impurities. The method conditions were meticulously fine-tuned which involved the exploration of the appropriate solvent, pH, flow of the mobile phase, columns, and wavelength. The method conditions were carefully chosen to successfully resolve the impurities of loteprednol and were employed in subsequent validation procedures. The stability profile of loteprednol was exposed to stress degradation experiments conducted under five conditions, and DPs were structurally characterized by employing LC-MS/MS. The chromatographic resolution of loteprednol and its impurities along with DPs was effectively achieved using a Phenomenex Luna 250 mm C18 column using 0.1 % phosphoric acid, methanol, and acetonitrile in 45:25:30 (v/v) pumped isocratically at 0.8 mL/min with 243 nm wavelength. The method produces an accurate fit calibration curve in 50-300 ㎍/mL for loteprednol and LOQ (0.05 ㎍/mL) - 0.30 ㎍/mL for its impurities with acceptable precision, accuracy, and recovery. The stress-induced degradation study revealed the degradation of loteprednol under basic, acidic, and photolytic conditions, resulting in the formation of seven distinct DPs. The efficacy of this method was validated through LC-MS/MS, which allowed for the verification of the chemical structures of the newly generated DPs of loteprednol. This method was appropriate for assessing the impurities of loteprednol and can also be appropriate for structural and quantitative assessment of its degradation products.