• Title/Summary/Keyword: Tunable Delay Line

Search Result 13, Processing Time 0.027 seconds

Tunable Composite Right/Left-Handed Delay Line with Large Group Delay for an FMCW Radar Transmitter

  • Park, Yong-Min;Ki, Dong-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.166-170
    • /
    • 2012
  • This paper presents a tunable composite right/left-handed (CRLH) delay line for a delay line discriminator that linearizes modulated frequency sweep in a frequency modulated continuous wave (FMCW) radar transmitter. The tunable delay line consists of 8 cascaded unit cells with series varactor diodes and shunt inductors. The reverse bias voltage of the varactor diode controlled the group delay through its junction capacitance. The measured results demonstrate a group delay of 8.12 ns and an insertion loss of 4.5 dB at 250 MHz, while a control voltage can be used to adjust the group delay by approximately 15 ns. A group delay per unit cell of approximately 1 ns was obtained, which is very large when compared with previously published results. This group delay can be used effectively in FMCW radar transmitters.

Tunable Optical Delay Line Based on Polymer Single-Ring Add/Drop Filters and Delay Waveguides (폴리머 단일 링 Add/Drop 필터와 지연 도파로로 구성된 튜닝 가능 광 신호 지연기)

  • Kim, Kyoungrae;Moon, Hyunseung;Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.174-180
    • /
    • 2016
  • A tunable optical delay line is designed, fabricated, and characterized. The tunable delay line consists of four polymer-ring add/drop filters with delay waveguides between adjacent ones. The polymer waveguide is a buried structure, designed to be square with core width and height of $1.8{\mu}m$. The refractive indices of the core and cladding polymer are 1.48 and 1.37 respectively. The large index difference and small cross section of the waveguide enable us to realize a compact device using a small radius of curvature. Four pairs of electrodes are evaporated above the add/drop filters to provide heating currents for thermal tuning. In measurements we can identify variable time delays of 110, 225, and 330 ps in proportion to the number of delay lines.

Comb-spacing-swept Source Using Differential Polarization Delay Line for Interferometric 3-dimensional Imaging

  • Park, Sang Min;Park, So Young;Kim, Chang-Seok
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • We present a broad-bandwidth comb-spacing-swept source (CSWS) based on a differential polarization delay line (DPDL) for interferometric three-dimensional (3D) imaging. The comb spacing of the CSWS is repeatedly swept by the tunable DPDL in the multiwavelength source to provide depth-scanning optical coherence tomography (OCT). As the polarization differential delay of the DPDL is tuned from 5 to 15 ps, the comb spacing along the wavelength continuously varies from 1.6 to 0.53 nm, respectively. The wavelength range of various semiconductor optical amplifiers and the cavity feedback ratio of the tunable fiber coupler are experimentally selected to obtain optimal conditions for a broader 3-dB bandwidth of the multiwavelength spectrum and thus provide a higher axial resolution of $35{\mu}m$ in interferometric OCT imaging. The proposed CSWS-OCT has a simple imaging interferometer configuration without reference-path scanning and a simple imaging process without the complex Fourier transform. 3D surface images of a via-hole structure on a printed circuit board and the top surface of a coin were acquired.

Tunable Photonic Microwave Delay Line Filter Based on Fabry-Perot Laser Diode

  • Heo, Sang-Hu;Kim, Junsu;Lee, Chung Ghiu;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • We report the physical implementation of a tunable photonic microwave delay line filter based on injection locking of a single Fabry-Perot laser diode (FP-LD) to a reflective semiconductor optical amplifier (RSOA). The laser generates equally spaced multiple wavelengths and a single tapped-delay line can be obtained with a dispersive single mode fiber. The filter frequency response depends on the wavelength spacing and can be tuned by the temperature of the FP-LD varying lasing wavelength. For amplitude control of the wavelengths, we use gain saturation of the RSOA and the offset between the peak wavelengths of the FP-LD and the RSOA to decrease the amplitude difference in the wavelengths. From the temperature change of total $15^{\circ}C$, the filter, consisting of four flat wavelengths and two wavelengths with slightly lower amplitudes on both sides, has shown tunability of about 390 MHz.

Tunable Photonic Microwave Band-pass Filter with High-resolution Using XGM Effect of an RSOA

  • Kwon, Won-Bae;Lee, Chung Ghiu;Seo, Dongjun;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.563-567
    • /
    • 2018
  • We propose and experimentally demonstrate a simple tunable photonic microwave band-pass filter with high resolution using a reflective semiconductor optical amplifier (RSOA) and an optical time-delay line. The RSOA is used as a gain medium for generating cross-gain modulation (XGM) effect as well as an optical source. The optical source provides narrow spectral width by self-injection locking the RSOA in conjunction with a partial reflection filter with specific center wavelength. Then, when the RSOA is operated in the saturation region and the modulated recursive signal is injected into the RSOA, the recursive signal is inversely copied to the injection locked optical source due to the XGM effect. Also, the tunability of the passband of the proposed microwave filter is shown by controlling an optical time-delay line in a recursive loop.

Characteristics of A Tunable OADM Using A Fiber-Optic Delay-Line Transversal Filter (광섬유 지연서로 트랜스버설 필터를 이용한 파장 가변 OADM의 특성)

  • 윤찬호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1707-1713
    • /
    • 2000
  • We have proposed a tunable optical ADM using a fiber-optic transversal filter which is composed of fiber couplers and metal-film coated fiber-optic tapped delay-lines with a flat spectral response in abroad range of wavelength. Simulation results show that the optical loss at the DROP and PASS wavelengths of the OADM is negligible and the wavelength tunability is 0.78${\mu}{\textrm}{m}$/ps for the unit time delay of 2 ps. In order to investigate the effects of wavelength drift of the imput optical signal on the OADM the loss at the DROP port and the crosstalks to the other ports have been calculated. The maximum bit rates have been calculated at 46.26 Gb/s for the input Gaussian pulse width of 10 ps.

  • PDF

Design and Fabrication of Reflective Array Type Wideband SAW Dispersive Delay Line

  • Choi Jun-Ho;Yang Jong-Won;Nah Sun-Phil;Jang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.110-116
    • /
    • 2006
  • A reflective array type surface acoustic wave(SAW) dispersive delay line(DDL) with high time-bandwidth at the V/UHF-band is designed and fabricated for compressive receiver applications. This type of the SAW DDL has the properties of the relative bandwidth of 20 %, the time delay of 49.89 usec, the insertion loss of 38.5 dB and the side lobe rejection of 39 dB. In comparison with a commercial SAW DDL, the insertion loss, amplitude ripple and side lobe rejection are improved by $1.5dB{\pm}0.6dB$ and 4 dB respectively. Using the fabricated SAW DDL, the prototype of the compressive receiver is developed. It is composed of RF converter, fast tunable LO, chirp LO, A/D converter, signal processing unit and control unit. This prototype system shows a fine frequency resolution of below 30 kHz with high scan rate.

A Novel High Speed Frequency Sweeping Signal Generator in X-band Based on Tunable Optoelectronic Oscillator

  • Sun, Mingming;Chen, Han;Sun, Xiaohan
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 2018
  • A novel X-band high speed frequency sweep signal generator based on a tunable optoelectronic oscillator (OEO) incorporating a frequency-swept laser is presented and the theoretical fundamentals of the design are explained. A prototype of the generator with tuning range from 8.8552 GHz to 10.3992 GHz and a fine step about 8 MHz is achieved. The generated radiofrequency signal with a single sideband (SSB) phase noise lower than -100 dBc/Hz@10KHz is experimentally demonstrated within the whole tunable range, without any narrow RF band-pass filters in the loop. And the tuning speed of the frequency sweep signal generator can reach to over 1 GHz/s benefiting from applying a novel dispersion compensation modular instead of several tens of kilometers of optical fiber delay line in the system.

Reduction of Switch Cost by Optimization of Tunable Wavelength Converters and Internal Wavelengths in the Optical Packet Switch with Shared FDL Buffer (공유형 광 지연 선로 버퍼를 갖는 광 패킷 스위치에서 튜닝 가능한 파장 변환기와 내부 파장 개수의 최적화에 의한 스위치 비용 감소)

  • Hwang, Il-Sun;Lim, Huhn-Kuk;Yu, Ki-Sung;Chung, Jin-Wook
    • Journal of Internet Computing and Services
    • /
    • v.7 no.6
    • /
    • pp.113-121
    • /
    • 2006
  • To reduce switch cost, the optimum numbers of tunable wavelength converters (TWCs) and internal wavelengths required for contention resolution of asynchronous and variable length packets like internet traffics, is presented in the optical packet switch (OPS) with the shared fiber delay line (FDL) buffer. To optimize TWCs and internal wavelength related to on OPS design cost, we proposed a scheduling algorithm for the limited TWCs and internal wavelengths. For three TWC alternatives (not shared, partially shared, and fully shared cases), the optimum numbers of TWCs and internal wavelengths to guarantee minimum pocket loss are evaluated to prevent resource waste. Under o given load, TWCs and internal wavelengths could be significantly reduced, guaranteeing the same pocket loss probability as the performance of on OPS with full TWCs and internal wavelengths.

  • PDF

Realization of All-Optical WDM Buffer Using Wavelength Routing (파장 라우팅 방식을 이용한 전광 WDM 버퍼 구현)

  • Choi Hoon;Eom Jin Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3A
    • /
    • pp.153-159
    • /
    • 2005
  • In this paper, we propose All-Optical WDM Buffer System for resolving the contention of Packets in Optical Packet Switching System. The proposed system consists of tunable wavelength converters based on SOA, N×N AWG, and fiber delay lines. This structure can reduce ASE and cross-talk noise because the contending packets are sent and buffered through each different path determined by a wavelength routing. We also performed buffering experiment for two contending WDM optical pulses with each 50ns width, and found that the contending problem is resolved well.