• Title/Summary/Keyword: Tumor tracking

Search Result 38, Processing Time 0.024 seconds

Significance of Preoperative Nerve Reconstruction Using Diffusion Tensor Imaging Tractography for Facial Nerve Protection in Vestibular Schwannoma

  • Yuanlong Zhang;Hongliang Ge;Mingxia Xu;Wenzhong Mei
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.2
    • /
    • pp.183-189
    • /
    • 2023
  • Objective : The facial nerve trace on the ipsilateral side of the vestibular schwannoma was reconstructed by diffusion tensor imaging tractography to identify the adjacent relationship between the facial nerve and the tumor, and to improve the level of intraoperative facial nerve protection. Methods : The clinical data of 30 cases of unilateral vestibular schwannoma who underwent tumor resection via retrosigmoid approach were collected between January 2019 and December 2020. All cases underwent magnetic resonance imaging examination before operation. Diffusion tensor imaging and anatomical images were used to reconstruct the facial nerve track of the affected side, so as to predict the course of the nerve and its adjacent relationship with the tumor, to compare the actual trace of the facial nerve during operation, verify the degree of coincidence, and evaluate the nerve function (House-Brackmann grade) after surgery. Results : The facial nerve of 27 out of 30 cases could be displayed by diffusion tensor imaging tractography, and the tracking rate was 90% (27/30). The intraoperative locations of facial nerve shown in 25 cases were consistent with the preoperative reconstruction results. The coincidence rate was 92.6% (25/27). The facial nerves were located on the anterior middle part of the tumor in 14 cases, anterior upper part in eight cases, anterior lower part in seven cases, and superior polar in one case. Intraoperative facial nerve anatomy was preserved in 30 cases. Among the 30 patients, total resection was performed in 28 cases and subtotal resection in two cases. The facial nerve function was evaluated 2 weeks after operation, and the results showed grade I in 12 cases, grade II in 16 cases and grade III in two cases. Conclusion : Preoperative diffusion tensor imaging tractography can clearly show the trajectory and adjacent position of the facial nerve on the side of vestibular schwannoma, which is beneficial to accurately identify and effectively protect the facial nerve during the operation, and is worthy of clinical application and promotion.

Efficient Cell Tracking Method for Automatic Analysis of Cellular Sequences (세포동영상의 자동분석을 위한 효율적인 세포추적방법)

  • Han, Chan-Hee;Song, In-Hwan;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.32-40
    • /
    • 2011
  • The tracking and analysis of cell activities in time-lapse sequences plays an important role in understanding complex biological processes such as the spread of the tumor, an invasion of the virus, the wound recovery and the cell division. For automatic tracking of cells, the tasks such as the cell detection at each frame, the investigation of the correspondence between cells in previous and current frames, the identification of the cell division and the recognition of new cells must be performed. This paper proposes an automatic cell tracking algorithm. In the first frame, the marker of each cell is extracted using the feature vector obtained by the analysis of cellular regions, and then the watershed algorithm is applied using the extracted markers to produce the cell segmentation. In subsequent frames, the segmentation results of the previous frame are incorporated in the segmentation process for the current frame. A combined criterion of geometric and intensity property of each cell region is used for the proper association between previous and current cells to obtain correct cell tracking. Simulation results show that the proposed method improves the tracking performance compared to the tracking method in Cellprofiler (the software package for automatic analysis of bioimages).

Development of a Real-Time Internal and External Marker Based Gating System for Proton Therapy

  • Cho, Junsang;Cheon, Wonjoong;Ahn, Sanghee;Lee, Moonhee;Park, Hee Chul;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.92-99
    • /
    • 2017
  • In respiratory-induced proton therapy, the accuracy of tracking system and beam controlling is more important than photon therapy. Therefore, a high accuracy motion tracking system that can track internal marker and external surrogate is needed. In this research, our team has installed internal and external marker tracking system at our institution's proton therapy system, and tested the scanning with gating according to the position of marker. The results demonstrate that the developed in-house external/internal marker based gating system can be clinically used for proton therapy system for moving tumor treatment.

A Fusion Study on the Selection of Cyberknife Technique according to the Location of the Pulmonary Tumors (폐종양의 위치에 따른 사이버나이프 기법의 선택에 관한 융합적 연구)

  • Kim, Gab-Jung;Kim, Jeong-Ho;Bae, Seok-Hwan;Kim, Nak-Sang;Seo, Sun-Yeol
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.101-108
    • /
    • 2019
  • Depending on the location of the lung tumor, the choice of treatment technique should be considered when treating the Cyberknife. The 4DCT images of 18 lung cancer patients were analyzed, and location error values were extracted through application program. The evaluation result was lower than the average position error only in the upper and the inner. These results suggest that the Vertebral tracking technique is effective when it is close to the pulmonary attachment or near the vertebral body, and the Synchrony technique is effective at other positions. In the future, we would like to study cyber knife treatment technique according to the position of the tumor as well as the volume of the lung and the respiratory cycle.

Transventricular Biopsy of Brain Tumor without Hydrocephalus Using Neuroendoscopy with Navigation

  • Song, Ji-Hye;Kong, Doo-Sik;Seol, Ho-Jun;Shin, Hyung-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.6
    • /
    • pp.415-419
    • /
    • 2010
  • Objective : It is usually difficult to perform the neuroendoscopic procedure in patients without hydrocephalus due to difficulties with ventricular cannulation. The purpose of this study was to find out the value of navigation guided neuroendoscopic biopsy in patients with peri- or intraventricular tumors without hydrocephalus. Methods : Six patients with brain tumors without hydrocephalus underwent navigation-guided neuroendoscopic biopsy. The procedure was indicated for verification of the histological diagnosis of the neoplasm, which was planned to be treated by chemotherapy and/or radiotherapy as the first line treatment, or establishment of the pathological diagnosis for further choice of the most appropriate treatment strategy. Results : Under the guidance of navigation, targeted lesion was successfully approached in all patients. Navigational tracking was especially helpful in entering small ventricles and in approaching the third ventricle through narrow foramen Monro. The histopathologic diagnosis was established in all of 6 patients : 2 germinomas, 2 astrocytomas, 1 dysembryoplastic neuroepithelial tumor and 1 pineocytoma. The tumor biopsy sites were pineal gland (n = 2), suprasellar area (n = 2), subcallosal area (n = 1) and thalamus (n = 1). There were no operative complications related to the endoscopic procedure. Conclusion : Endoscopic biopsy or resection of peri- or intraventricular tumors in patients without hydrocephalus is feasible. Image-guided neuroendoscopic procedure improved the accuracy of the endoscopic approach and minimized brain trauma. The absence of ventriculomegaly in patients with brain tumor may not be served as a contraindication to endoscopic tumor biopsy.

Analysis of Dose Distribution on Critical Organs for Radiosurgery with CyberKnife Real-Time Tumor Tracking System (사이버나이프 실시간 종양추적 시스템을 이용한 방사선수술 시 주요 장기의 선량분포 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Ji, Young-Hoon;Kim, Kum-Bae;Lee, Sang-Hoon;Choi, Jin-Ho;Lee, Re-Na;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.14-20
    • /
    • 2009
  • We measured the dose distribution for spinal cord and tumor using Gafchromic film, applying 3D and 4D-Treatment Planning for lung tumor within the phantom. A measured dose distribution was compared with a calculated dose distribution generated from 3D radiation treatment planning and 4D radiation treatment planning system. The agreement of the dose distribution in tumor for 3D and 4D treatment planning was 90.6%, 97.64% using gamma index computed for a distance to agreement of 1 mm and a dose difference of 3%. However, a gamma agreement index of 3% dose difference tolerence of and 2 mm distance to agreement, the accordance of the dose distribution around cord for 3D and 4D radiation treatment planning was 57.13%, 90.4%. There are significant differences between a calculated dose and a measured dose for 3D radiation treatment planning, no significant differences for 4D treatment planning. The results provide the effectiveness of the 4D treatment planning as compared to 3D. We suggest that the 4-dimensional treatment planning should be considered in the case where such equipments as Cyberknife with the real time tracking system are used to treat the tumors in the moving organ.

  • PDF

A Non-invasive Real-time Respiratory Organ Motion Tracking System for Image Guided Radio-Therapy (IGRT를 위한 비침습적인 호흡에 의한 장기 움직임 실시간 추적시스템)

  • Kim, Yoon-Jong;Yoon, Uei-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.676-683
    • /
    • 2007
  • A non-invasive respiratory gated radiotherapy system like those based on external anatomic motion gives better comfortableness to patients than invasive system on treatment. However, higher correlation between the external and internal anatomic motion is required to increase the effectiveness of non-invasive respiratory gated radiotherapy. Both of invasive and non-invasive methods need to track the internal anatomy with the higher precision and rapid response. Especially, the non-invasive method has more difficulty to track the target position successively because of using only image processing. So we developed the system to track the motion for a non-invasive respiratory gated system to accurately find the dynamic position of internal structures such as the diaphragm and tumor. The respiratory organ motion tracking apparatus consists of an image capture board, a fluoroscopy system and a processing computer. After the image board grabs the motion of internal anatomy through the fluoroscopy system, the computer acquires the organ motion tracking data by image processing without any additional physical markers. The patients breathe freely without any forced breath control and coaching, when this experiment was performed. The developed pattern-recognition software could extract the target motion signal in real-time from the acquired fluoroscopic images. The range of mean deviations between the real and acquired target positions was measured for some sample structures in an anatomical model phantom. The mean and max deviation between the real and acquired positions were less than 1mm and 2mm respectively with the standardized movement using a moving stage and an anatomical model phantom. Under the real human body, the mean and maximum distance of the peak to trough was measured 23.5mm and 55.1mm respectively for 13 patients' diaphragm motion. The acquired respiration profile showed that human expiration period was longer than the inspiration period. The above results could be applied to respiratory-gated radiotherapy.

Extracting Ganglion Cysts from Ultrasound Image with Fuzzy Membership Function (퍼지 소속 함수를 이용한 초음파 영상에서 결절종 추출)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1296-1300
    • /
    • 2015
  • Ganglion cysts are commonly observed cystic tumor in association with the joints and tendons of the appendicular skeleton. In this paper we propose a method to extract ganglion cysts from ultrasound images with intelligent image processing. The method consists of fuzzy stretching preprocessing to enhance the contrast between related organs and 8-directional contour tracking to model the boundaries of the cysts and labelling procedure to compute the size of cysts. In experiment, we verified that the proposed method extracts ganglion cysts accurately from ultrasound images.

Radioimmunotherapy in Head and Neck Cancer (두경부암에서 방사면역치료의 역할)

  • Choi, Ik Joon
    • Korean Journal of Otorhinolaryngology-Head and Neck Surgery
    • /
    • v.61 no.12
    • /
    • pp.637-643
    • /
    • 2018
  • Radioimmunotherapy (RIT) is a therapy that takes advantage of the "cross-fire" effect of emitted radiation by radionuclides conjugated to tumor-directed monoclonal antibodies (mAb) (including those fragments) or peptides. While RIT has been successfully employed for the treatment of lymphoma, mostly with radiolabeled antibodies against CD20 [$^{90}yttrium$ ($^{90}Y$)-ibritumomab tiuxetan; $Zevalin^{(R)}$ and $^{131}iodine$ ($^{131}I)-tositumomab$; $Bexxar^{(R)}$], its use in solid tumors is more challenging, so far. Immuno-PET, a tool for tracking and quantification of mAbs with PET in vivo, is an exciting novel option to improve diagnostic imaging and guide mAb-based therapy. RIT in solid tumors including head and neck cancer may be an alternative treatment with advances in various biological, chemical, and treatment procedures, and it may help to reduce unnecessary exposure and enhance the therapeutic efficacy. Also, immuno-PET based on RIT might play an important role in cancer staging, in patients or targets selection of targeted therapeutics and in monitoring the response of targeted therapeutics as precision medicine. In this review, fundamentals of RIT/immune-PET and current knowledge of the preclinical/clinical trials in RIT for solid tumor including head and neck cancer are reviewed.

Analysis of Correlation Coefficient Between Movements of Thoracoabdominal Tumors and External Respiration Using Image Guided Radiotherapy(IGRT) (영상유도 방사선치료장치(IGRT)를 이용한 흉·복부 종양의 움직임과 외부호흡과의 상관관계 분석)

  • Kim, Gha-Jung;Hong, Ju-Youn;Han, Sang-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.362-370
    • /
    • 2014
  • This study measured and analyzed the correlation coefficient between movements of thoracoabdominal tumors and external respiration in a free-breathing state, using cyberknife image guided radiotherapy(IGRT). This study subjects included a total of 30 patients with lung tumors(n=10), liver tumors(n=10) and pancreatic tumor(n=10) who underwent radiotherapy, and the movements of tumors were analyzed using converted log data of the tumor motion tracking system(MTS). In a free-breathing state, In relation to Peason's correlation coefficient between external respiration and lung tumors in the entire treatment process, the correlation coefficient was 0.646(p<0.05) in the cranio-caudal direction, 0.365(p<0.088) in the left and right direction and 0.196(p<0.115) in the antero-posterior direction. The correlation coefficient of liver tumors was 0.841(p<0.000) in the cranio-caudal direction, 0.346 (p<0.179) in the left and right direction and 0.691(p<0.001) in the antero-posterior direction. The correlation coefficient of Pancreatic tumors was 0.683(p<0.000) in the cranio-caudal direction, 0.397(p<0.006) in the left and right direction and 0.268(p<0.127) in the antero-posterior direction. In conclusion, the measurement findings of thoracoabdominal tumor movement using IGRT would be helpful in determining an accurate target volume. Moreover, the analysis of correlation between external respiration and movements of internal tumors would provide important information to correct movements of tumors for diverse radiotherapy techniques.